File size: 13,714 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
from dataclasses import dataclass, field
import os

import torch
import torch.nn as nn

from fairseq import utils
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import (
    BaseFairseqModel,
    register_model,
)

from fairseq.models.roberta.model import RobertaClassificationHead

from fairseq.modules import (
    LayerNorm,
    TransformerSentenceEncoder,
    TransformerSentenceEncoderLayer,
)


ACTIVATION_FN_CHOICES = ChoiceEnum(utils.get_available_activation_fns())
JOINT_CLASSIFICATION_CHOICES = ChoiceEnum(["none", "sent"])
SENTENCE_REP_CHOICES = ChoiceEnum(["head", "meanpool", "maxpool"])


def update_init_roberta_model_state(state):
    """
   update the state_dict of a Roberta model for initializing
   weights of the BertRanker
   """
    for k in list(state.keys()):
        if ".lm_head." in k or "version" in k:
            del state[k]
            continue
        # remove 'encoder/decoder.sentence_encoder.' from the key
        assert k.startswith("encoder.sentence_encoder.") or k.startswith(
            "decoder.sentence_encoder."
        ), f"Cannot recognize parameter name {k}"
        if "layernorm_embedding" in k:
            new_k = k.replace(".layernorm_embedding.", ".emb_layer_norm.")
            state[new_k[25:]] = state[k]
        else:
            state[k[25:]] = state[k]
        del state[k]


class BaseRanker(nn.Module):
    def __init__(self, args, task):
        super().__init__()

        self.separator_token = task.dictionary.eos()
        self.padding_idx = task.dictionary.pad()

    def forward(self, src_tokens):
        raise NotImplementedError

    def get_segment_labels(self, src_tokens):
        segment_boundary = (src_tokens == self.separator_token).long()
        segment_labels = (
            segment_boundary.cumsum(dim=1)
            - segment_boundary
            - (src_tokens == self.padding_idx).long()
        )

        return segment_labels

    def get_positions(self, src_tokens, segment_labels):
        segment_positions = (
            torch.arange(src_tokens.shape[1])
            .to(src_tokens.device)
            .repeat(src_tokens.shape[0], 1)
        )
        segment_boundary = (src_tokens == self.separator_token).long()
        _, col_idx = (segment_positions * segment_boundary).nonzero(as_tuple=True)
        col_idx = torch.cat([torch.zeros(1).type_as(col_idx), col_idx])
        offset = torch.cat(
            [
                torch.zeros(1).type_as(segment_boundary),
                segment_boundary.sum(dim=1).cumsum(dim=0)[:-1],
            ]
        )
        segment_positions -= col_idx[segment_labels + offset.unsqueeze(1)] * (
            segment_labels != 0
        )

        padding_mask = src_tokens.ne(self.padding_idx)
        segment_positions = (segment_positions + 1) * padding_mask.type_as(
            segment_positions
        ) + self.padding_idx

        return segment_positions


class BertRanker(BaseRanker):
    def __init__(self, args, task):
        super(BertRanker, self).__init__(args, task)

        init_model = getattr(args, "pretrained_model", "")
        self.joint_layers = nn.ModuleList()
        if os.path.isfile(init_model):
            print(f"initialize weight from {init_model}")

            from fairseq import hub_utils

            x = hub_utils.from_pretrained(
                os.path.dirname(init_model),
                checkpoint_file=os.path.basename(init_model),
            )

            in_state_dict = x["models"][0].state_dict()
            init_args = x["args"].model

            num_positional_emb = init_args.max_positions + task.dictionary.pad() + 1

            # follow the setup in roberta
            self.model = TransformerSentenceEncoder(
                padding_idx=task.dictionary.pad(),
                vocab_size=len(task.dictionary),
                num_encoder_layers=getattr(
                    args, "encoder_layers", init_args.encoder_layers
                ),
                embedding_dim=init_args.encoder_embed_dim,
                ffn_embedding_dim=init_args.encoder_ffn_embed_dim,
                num_attention_heads=init_args.encoder_attention_heads,
                dropout=init_args.dropout,
                attention_dropout=init_args.attention_dropout,
                activation_dropout=init_args.activation_dropout,
                num_segments=2,  # add language embeddings
                max_seq_len=num_positional_emb,
                offset_positions_by_padding=False,
                encoder_normalize_before=True,
                apply_bert_init=True,
                activation_fn=init_args.activation_fn,
                freeze_embeddings=args.freeze_embeddings,
                n_trans_layers_to_freeze=args.n_trans_layers_to_freeze,
            )

            # still need to learn segment embeddings as we added a second language embedding
            if args.freeze_embeddings:
                for p in self.model.segment_embeddings.parameters():
                    p.requires_grad = False

            update_init_roberta_model_state(in_state_dict)
            print("loading weights from the pretrained model")
            self.model.load_state_dict(
                in_state_dict, strict=False
            )  # ignore mismatch in language embeddings

            ffn_embedding_dim = init_args.encoder_ffn_embed_dim
            num_attention_heads = init_args.encoder_attention_heads
            dropout = init_args.dropout
            attention_dropout = init_args.attention_dropout
            activation_dropout = init_args.activation_dropout
            activation_fn = init_args.activation_fn

            classifier_embed_dim = getattr(
                args, "embed_dim", init_args.encoder_embed_dim
            )
            if classifier_embed_dim != init_args.encoder_embed_dim:
                self.transform_layer = nn.Linear(
                    init_args.encoder_embed_dim, classifier_embed_dim
                )
        else:
            self.model = TransformerSentenceEncoder(
                padding_idx=task.dictionary.pad(),
                vocab_size=len(task.dictionary),
                num_encoder_layers=args.encoder_layers,
                embedding_dim=args.embed_dim,
                ffn_embedding_dim=args.ffn_embed_dim,
                num_attention_heads=args.attention_heads,
                dropout=args.dropout,
                attention_dropout=args.attention_dropout,
                activation_dropout=args.activation_dropout,
                max_seq_len=task.max_positions()
                if task.max_positions()
                else args.tokens_per_sample,
                num_segments=2,
                offset_positions_by_padding=False,
                encoder_normalize_before=args.encoder_normalize_before,
                apply_bert_init=args.apply_bert_init,
                activation_fn=args.activation_fn,
            )

            classifier_embed_dim = args.embed_dim
            ffn_embedding_dim = args.ffn_embed_dim
            num_attention_heads = args.attention_heads
            dropout = args.dropout
            attention_dropout = args.attention_dropout
            activation_dropout = args.activation_dropout
            activation_fn = args.activation_fn

        self.joint_classification = args.joint_classification
        if args.joint_classification == "sent":
            if args.joint_normalize_before:
                self.joint_layer_norm = LayerNorm(classifier_embed_dim)
            else:
                self.joint_layer_norm = None

            self.joint_layers = nn.ModuleList(
                [
                    TransformerSentenceEncoderLayer(
                        embedding_dim=classifier_embed_dim,
                        ffn_embedding_dim=ffn_embedding_dim,
                        num_attention_heads=num_attention_heads,
                        dropout=dropout,
                        attention_dropout=attention_dropout,
                        activation_dropout=activation_dropout,
                        activation_fn=activation_fn,
                    )
                    for _ in range(args.num_joint_layers)
                ]
            )

        self.classifier = RobertaClassificationHead(
            classifier_embed_dim,
            classifier_embed_dim,
            1,  # num_classes
            "tanh",
            args.classifier_dropout,
        )

    def forward(self, src_tokens, src_lengths):
        segment_labels = self.get_segment_labels(src_tokens)
        positions = self.get_positions(src_tokens, segment_labels)

        inner_states, _ = self.model(
            tokens=src_tokens,
            segment_labels=segment_labels,
            last_state_only=True,
            positions=positions,
        )

        return inner_states[-1].transpose(0, 1)  # T x B x C -> B x T x C

    def sentence_forward(self, encoder_out, src_tokens=None, sentence_rep="head"):
        # encoder_out: B x T x C
        if sentence_rep == "head":
            x = encoder_out[:, :1, :]
        else:  # 'meanpool', 'maxpool'
            assert src_tokens is not None, "meanpool requires src_tokens input"
            segment_labels = self.get_segment_labels(src_tokens)
            padding_mask = src_tokens.ne(self.padding_idx)
            encoder_mask = segment_labels * padding_mask.type_as(segment_labels)

            if sentence_rep == "meanpool":
                ntokens = torch.sum(encoder_mask, dim=1, keepdim=True)
                x = torch.sum(
                    encoder_out * encoder_mask.unsqueeze(2), dim=1, keepdim=True
                ) / ntokens.unsqueeze(2).type_as(encoder_out)
            else:  # 'maxpool'
                encoder_out[
                    (encoder_mask == 0).unsqueeze(2).repeat(1, 1, encoder_out.shape[-1])
                ] = -float("inf")
                x, _ = torch.max(encoder_out, dim=1, keepdim=True)

        if hasattr(self, "transform_layer"):
            x = self.transform_layer(x)

        return x  # B x 1 x C

    def joint_forward(self, x):
        # x: T x B x C
        if self.joint_layer_norm:
            x = self.joint_layer_norm(x.transpose(0, 1))
            x = x.transpose(0, 1)

        for layer in self.joint_layers:
            x, _ = layer(x, self_attn_padding_mask=None)
        return x

    def classification_forward(self, x):
        # x: B x T x C
        return self.classifier(x)


@dataclass
class DiscriminativeNMTRerankerConfig(FairseqDataclass):
    pretrained_model: str = field(
        default="", metadata={"help": "pretrained model to load"}
    )
    sentence_rep: SENTENCE_REP_CHOICES = field(
        default="head",
        metadata={
            "help": "method to transform the output of the transformer stack to a sentence-level representation"
        },
    )

    dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
    attention_dropout: float = field(
        default=0.0, metadata={"help": "dropout probability for attention weights"}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "dropout probability after activation in FFN"}
    )
    classifier_dropout: float = field(
        default=0.0, metadata={"help": "classifier dropout probability"}
    )
    embed_dim: int = field(default=768, metadata={"help": "embedding dimension"})
    ffn_embed_dim: int = field(
        default=2048, metadata={"help": "embedding dimension for FFN"}
    )
    encoder_layers: int = field(default=12, metadata={"help": "num encoder layers"})
    attention_heads: int = field(default=8, metadata={"help": "num attention heads"})
    encoder_normalize_before: bool = field(
        default=False, metadata={"help": "apply layernorm before each encoder block"}
    )
    apply_bert_init: bool = field(
        default=False, metadata={"help": "use custom param initialization for BERT"}
    )
    activation_fn: ACTIVATION_FN_CHOICES = field(
        default="relu", metadata={"help": "activation function to use"}
    )
    freeze_embeddings: bool = field(
        default=False, metadata={"help": "freeze embeddings in the pretrained model"}
    )
    n_trans_layers_to_freeze: int = field(
        default=0,
        metadata={
            "help": "number of layers to freeze in the pretrained transformer model"
        },
    )

    # joint classfication
    joint_classification: JOINT_CLASSIFICATION_CHOICES = field(
        default="none",
        metadata={"help": "method to compute joint features for classification"},
    )
    num_joint_layers: int = field(
        default=1, metadata={"help": "number of joint layers"}
    )
    joint_normalize_before: bool = field(
        default=False,
        metadata={"help": "apply layer norm on the input to the joint layer"},
    )


@register_model(
    "discriminative_nmt_reranker", dataclass=DiscriminativeNMTRerankerConfig
)
class DiscriminativeNMTReranker(BaseFairseqModel):
    @classmethod
    def build_model(cls, args, task):
        model = BertRanker(args, task)
        return DiscriminativeNMTReranker(args, model)

    def __init__(self, args, model):
        super().__init__()

        self.model = model
        self.sentence_rep = args.sentence_rep
        self.joint_classification = args.joint_classification

    def forward(self, src_tokens, src_lengths, **kwargs):
        return self.model(src_tokens, src_lengths)

    def sentence_forward(self, encoder_out, src_tokens):
        return self.model.sentence_forward(encoder_out, src_tokens, self.sentence_rep)

    def joint_forward(self, x):
        return self.model.joint_forward(x)

    def classification_forward(self, x):
        return self.model.classification_forward(x)