File size: 23,439 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
from typing import Any, Dict, Optional, List, Tuple

import torch
import torch.nn as nn
from fairseq import utils
from fairseq.models import register_model, register_model_architecture
from fairseq.models.transformer import (
    DEFAULT_MAX_SOURCE_POSITIONS,
    DEFAULT_MAX_TARGET_POSITIONS,
    TransformerDecoder,
    TransformerEncoder,
    TransformerModel,
    base_architecture,
)
from torch import Tensor


logger = logging.getLogger(__name__)


@register_model("transformer_pointer_generator")
class TransformerPointerGeneratorModel(TransformerModel):
    """
    Transformer model from `"Attention Is All You Need" (Vaswani et al, 2017)
    <https://arxiv.org/abs/1706.03762>`_, augmented with a pointer-generator
    network from `"Get To The Point: Summarization with Pointer-Generator
    Networks" (See et al, 2017) <https://arxiv.org/abs/1704.04368>`_.

    Args:
        encoder (TransformerPointerGeneratorEncoder): the encoder
        decoder (TransformerPointerGeneratorDecoder): the decoder

    The Transformer pointer-generator model provides the following named
    architectures and command-line arguments:

    .. argparse::
        :ref: fairseq.models.transformer_pointer_generator_parser
        :prog:
    """

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        # fmt: off
        TransformerModel.add_args(parser)
        parser.add_argument('--alignment-heads', type=int, metavar='N',
                            help='number of attention heads to be used for '
                                 'pointing')
        parser.add_argument('--alignment-layer', type=int, metavar='I',
                            help='layer number to be used for pointing (0 '
                                 'corresponding to the bottommost layer)')
        parser.add_argument('--source-position-markers', type=int, metavar='N',
                            help='dictionary includes N additional items that '
                                 'represent an OOV token at a particular input '
                                 'position')
        parser.add_argument('--force-generation', type=float, metavar='P',
                            default=None,
                            help='set the vocabulary distribution weight to P, '
                                 'instead of predicting it from the input (1.0 '
                                 'corresponding to generation, 0.0 to pointing)')
        # fmt: on

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_architecture(args)

        if args.encoder_layers_to_keep:
            args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
        if args.decoder_layers_to_keep:
            args.decoder_layers = len(args.decoder_layers_to_keep.split(","))

        if getattr(args, "max_source_positions", None) is None:
            args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
        if getattr(args, "max_target_positions", None) is None:
            args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
        if getattr(args, "source_position_markers", None) is None:
            args.source_position_markers = args.max_source_positions

        src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
        if src_dict != tgt_dict:
            raise ValueError("Pointer-generator requires a joined dictionary")

        def build_embedding(dictionary, embed_dim, path=None):
            # The dictionary may include additional items that can be used in
            # place of the normal OOV token and that all map to the same
            # embedding. Using a different token for each input position allows
            # one to restore the word identities from the original source text.
            num_embeddings = len(dictionary) - args.source_position_markers
            padding_idx = dictionary.pad()
            unk_idx = dictionary.unk()
            logger.info(
                "dictionary indices from {0} to {1} will be mapped to {2}".format(
                    num_embeddings, len(dictionary) - 1, unk_idx
                )
            )
            emb = Embedding(num_embeddings, embed_dim, padding_idx, unk_idx)
            # if provided, load from preloaded dictionaries
            if path:
                embed_dict = utils.parse_embedding(path)
                utils.load_embedding(embed_dict, dictionary, emb)
            return emb

        if args.share_all_embeddings:
            if args.encoder_embed_dim != args.decoder_embed_dim:
                raise ValueError(
                    "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
                )
            if args.decoder_embed_path and (
                args.decoder_embed_path != args.encoder_embed_path
            ):
                raise ValueError(
                    "--share-all-embeddings not compatible with --decoder-embed-path"
                )
            encoder_embed_tokens = build_embedding(
                src_dict, args.encoder_embed_dim, args.encoder_embed_path
            )
            decoder_embed_tokens = encoder_embed_tokens
            args.share_decoder_input_output_embed = True
        else:
            encoder_embed_tokens = build_embedding(
                src_dict, args.encoder_embed_dim, args.encoder_embed_path
            )
            decoder_embed_tokens = build_embedding(
                tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
            )

        encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens)
        decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens)
        return cls(args, encoder, decoder)

    @classmethod
    def build_encoder(cls, args, src_dict, embed_tokens):
        return TransformerPointerGeneratorEncoder(args, src_dict, embed_tokens)

    @classmethod
    def build_decoder(cls, args, tgt_dict, embed_tokens):
        return TransformerPointerGeneratorDecoder(args, tgt_dict, embed_tokens)


class TransformerPointerGeneratorEncoder(TransformerEncoder):
    """
    Transformer encoder consisting of *args.encoder_layers* layers. Each layer
    is a :class:`TransformerEncoderLayer`. The pointer-generator variant adds
    the source tokens to the encoder output as these are otherwise not passed
    to the decoder.
    """

    def forward(
        self,
        src_tokens,
        src_lengths: Optional[Tensor] = None,
        return_all_hiddens: bool = False,
        token_embeddings: Optional[Tensor] = None
    ):
        """
        Runs the `forward()` method of the parent Transformer class. Then adds
        the source tokens into the encoder output tuple.

        While it might be more elegant that the model would pass the source
        tokens to the `forward()` method of the decoder too, this would require
        changes to `SequenceGenerator`.

        Args:
            src_tokens (torch.LongTensor): tokens in the source language of
                shape `(batch, src_len)`
            src_lengths (torch.LongTensor): lengths of each source sentence of
                shape `(batch)`
            return_all_hiddens (bool, optional): also return all of the
                intermediate hidden states (default: False).
            token_embeddings (torch.Tensor, optional): precomputed embeddings
                default `None` will recompute embeddings

        Returns:
            namedtuple:
                - **encoder_out** (Tensor): the last encoder layer's output of
                  shape `(src_len, batch, embed_dim)`
                - **encoder_padding_mask** (ByteTensor): the positions of
                  padding elements of shape `(batch, src_len)`
                - **encoder_embedding** (Tensor): the (scaled) embedding lookup
                  of shape `(batch, src_len, embed_dim)`
                - **encoder_states** (List[Tensor]): all intermediate
                  hidden states of shape `(src_len, batch, embed_dim)`.
                  Only populated if *return_all_hiddens* is True.
                - **src_tokens** (Tensor): input token ids of shape
                  `(batch, src_len)`
        """
        encoder_out = self.forward_scriptable(src_tokens,
                                              src_lengths,
                                              return_all_hiddens,
                                              token_embeddings)

        # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
        # `forward` so we use a dictionary instead.
        # TorchScript does not support mixed values so the values are all lists.
        # The empty list is equivalent to None.
        return {
            "encoder_out": encoder_out["encoder_out"],  # T x B x C
            "encoder_padding_mask": encoder_out["encoder_padding_mask"],  # B x T
            "encoder_embedding": encoder_out["encoder_embedding"],  # B x T x C
            "encoder_states": encoder_out["encoder_states"],  # List[T x B x C]
            "src_tokens": [src_tokens],  # B x T
            "src_lengths": [],
        }


class TransformerPointerGeneratorDecoder(TransformerDecoder):
    """
    Transformer decoder consisting of *args.decoder_layers* layers. Each layer
    is a :class:`TransformerDecoderLayer`. The pointer-generator variant mixes
    the output probabilities with an attention distribution in the output layer.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): decoding dictionary
        embed_tokens (torch.nn.Embedding): output embedding
    """

    def __init__(self, args, dictionary, embed_tokens):
        super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False)

        # In the pointer-generator model these arguments define the decoder
        # layer and the number of attention heads that will be averaged to
        # create the alignment for pointing.
        self.alignment_heads = args.alignment_heads
        self.alignment_layer = args.alignment_layer

        input_embed_dim = embed_tokens.embedding_dim

        # Generation probabilities / interpolation coefficients are predicted
        # from the current decoder input embedding and the decoder output, which
        # is the size of output_embed_dim.
        p_gen_input_size = input_embed_dim + self.output_embed_dim
        self.project_p_gens = nn.Linear(p_gen_input_size, 1)
        nn.init.zeros_(self.project_p_gens.bias)

        # The dictionary may include a separate entry for an OOV token in each
        # input position, so that their identity can be restored from the
        # original source text.
        self.num_types = len(dictionary)
        self.num_oov_types = args.source_position_markers
        self.num_embeddings = self.num_types - self.num_oov_types
        self.force_p_gen = args.force_generation

    def forward(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        features_only: bool = False,
        alignment_layer: Optional[int] = 0,
        alignment_heads: Optional[int] = 1,
        src_lengths: Optional[Any] = None,
        return_all_hiddens: bool = False,
    ):
        """
        Args:
            prev_output_tokens (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_out (optional): output from the encoder, used for
                encoder-side attention
            incremental_state (dict, optional): dictionary used for storing
                state during :ref:`Incremental decoding`
            features_only (bool, optional): only return features without
                applying output layer (default: False)
            alignment_layer (int, optional): 0-based index of the layer to be
                used for pointing (default: 0)
            alignment_heads (int, optional): number of attention heads to be
                used for pointing (default: 1)

        Returns:
            tuple:
                - the decoder's output of shape `(batch, tgt_len, vocab)`
                - a dictionary with any model-specific outputs
        """
        # The normal Transformer model doesn't pass the alignment_layer and
        # alignment_heads parameters correctly. We use our local variables.
        x, extra = self.extract_features(
            prev_output_tokens,
            encoder_out=encoder_out,
            incremental_state=incremental_state,
            alignment_layer=self.alignment_layer,
            alignment_heads=self.alignment_heads,
        )
        if not features_only:
            # Embedding the tokens again for generation probability prediction,
            # so that we don't have to reimplement the whole extract_features()
            # method.
            if incremental_state is not None:
                prev_output_tokens = prev_output_tokens[:, -1:]
            prev_output_embed = self.embed_tokens(prev_output_tokens)
            prev_output_embed *= self.embed_scale
            predictors = torch.cat((prev_output_embed, x), 2)
            p_gens = self.project_p_gens(predictors)
            p_gens = torch.sigmoid(p_gens.float())
            # Torchscript complains if encoder_out or attn are None because
            # `output_layer()` signature expects tensors instead
            attn: Optional[Tensor] = extra["attn"][0]
            assert encoder_out is not None
            assert attn is not None
            x = self.output_layer(x, attn, encoder_out["src_tokens"][0], p_gens)
        return x, extra

    def output_layer(
        self,
        features: Tensor,
        attn: Tensor,
        src_tokens: Tensor,
        p_gens: Tensor
    ) -> Tensor:
        """
        Project features to the vocabulary size and mix with the attention
        distributions.
        """
        if self.force_p_gen is not None:
            p_gens = self.force_p_gen

        # project back to size of vocabulary
        if self.adaptive_softmax is None:
            logits = self.output_projection(features)
        else:
            logits = features

        batch_size = logits.shape[0]
        output_length = logits.shape[1]
        assert logits.shape[2] == self.num_embeddings
        assert src_tokens.shape[0] == batch_size
        src_length = src_tokens.shape[1]

        # The final output distribution will be a mixture of the normal output
        # distribution (softmax of logits) and attention weights.
        gen_dists = self.get_normalized_probs_scriptable(
            (logits, None), log_probs=False, sample=None
        )
        gen_dists = torch.mul(gen_dists, p_gens)
        padding_size = (batch_size, output_length, self.num_oov_types)
        padding = gen_dists.new_zeros(padding_size)
        gen_dists = torch.cat((gen_dists, padding), 2)
        assert gen_dists.shape[2] == self.num_types

        # Scatter attention distributions to distributions over the extended
        # vocabulary in a tensor of shape [batch_size, output_length,
        # vocab_size]. Each attention weight will be written into a location
        # that is for other dimensions the same as in the index tensor, but for
        # the third dimension it's the value of the index tensor (the token ID).
        attn = torch.mul(attn.float(), 1 - p_gens)
        index = src_tokens[:, None, :]
        index = index.expand(batch_size, output_length, src_length)
        attn_dists_size = (batch_size, output_length, self.num_types)
        attn_dists = attn.new_zeros(attn_dists_size)
        attn_dists.scatter_add_(2, index, attn.float())

        # Final distributions, [batch_size, output_length, num_types].
        return gen_dists + attn_dists

    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        """
        Get normalized probabilities (or log probs) from a net's output.
        Pointer-generator network output is already normalized.
        """
        probs = net_output[0]
        # Make sure the probabilities are greater than zero when returning log
        # probabilities.
        return probs.clamp(1e-10, 1.0).log() if log_probs else probs


class Embedding(nn.Embedding):
    r"""A simple lookup table that stores embeddings of a fixed dictionary and size.
    This module is often used to store word embeddings and retrieve them using indices.
    The input to the module is a list of indices, and the output is the corresponding
    word embeddings. This subclass differs from the standard PyTorch Embedding class by
    allowing additional vocabulary entries that will be mapped to the unknown token
    embedding.
    Args:
        num_embeddings (int): size of the dictionary of embeddings
        embedding_dim (int): the size of each embedding vector
        padding_idx (int): Pads the output with the embedding vector at :attr:`padding_idx`
                           (initialized to zeros) whenever it encounters the index.
        unk_idx (int): Maps all token indices that are greater than or equal to
                       num_embeddings to this index.
    Attributes:
        weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
                         initialized from :math:`\mathcal{N}(0, 1)`
    Shape:
        - Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract
        - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
    .. note::
        Keep in mind that only a limited number of optimizers support
        sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
        :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
    .. note::
        With :attr:`padding_idx` set, the embedding vector at
        :attr:`padding_idx` is initialized to all zeros. However, note that this
        vector can be modified afterwards, e.g., using a customized
        initialization method, and thus changing the vector used to pad the
        output. The gradient for this vector from :class:`~torch.nn.Embedding`
        is always zero.
    """
    __constants__ = ["unk_idx"]

    # Torchscript: Inheriting from Embedding class produces an error when exporting to Torchscript
    # -> RuntimeError: Unable to cast Python instance to C++ type (compile in debug mode for details
    # It's happening because max_norm attribute from nn.Embedding is None by default and it cannot be
    # cast to a C++ type
    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        padding_idx: Optional[int],
        unk_idx: int,
        max_norm: Optional[float] = float("inf"),
    ):
        super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx, max_norm=max_norm)
        self.unk_idx = unk_idx
        nn.init.normal_(self.weight, mean=0, std=embedding_dim ** -0.5)
        nn.init.constant_(self.weight[padding_idx], 0)

    def forward(self, input):
        input = torch.where(
            input >= self.num_embeddings, torch.ones_like(input) * self.unk_idx, input
        )
        return nn.functional.embedding(
            input, self.weight, self.padding_idx, self.max_norm,
            self.norm_type, self.scale_grad_by_freq, self.sparse
        )


@register_model_architecture(
    "transformer_pointer_generator", "transformer_pointer_generator"
)
def transformer_pointer_generator(args):
    args.alignment_heads = getattr(args, "alignment_heads", 1)
    args.alignment_layer = getattr(args, "alignment_layer", -1)
    base_architecture(args)
    if args.alignment_layer < 0:
        args.alignment_layer = args.decoder_layers + args.alignment_layer


@register_model_architecture(
    "transformer_pointer_generator", "transformer_pointer_generator_iwslt_de_en"
)
def transformer_pointer_generator_iwslt_de_en(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    transformer_pointer_generator(args)


@register_model_architecture(
    "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de"
)
def transformer_pointer_generator_wmt_en_de(args):
    transformer_pointer_generator(args)


# Transformer pointer-generator with the base Transformer parameters as used in
# the "Attention Is All You Need" paper (Vaswani et al., 2017)
@register_model_architecture(
    "transformer_pointer_generator",
    "transformer_pointer_generator_vaswani_wmt_en_de_big",
)
def transformer_pointer_generator_vaswani_wmt_en_de_big(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
    args.dropout = getattr(args, "dropout", 0.3)
    transformer_pointer_generator(args)


@register_model_architecture(
    "transformer_pointer_generator",
    "transformer_pointer_generator_vaswani_wmt_en_fr_big",
)
def transformer_pointer_generator_vaswani_wmt_en_fr_big(args):
    args.dropout = getattr(args, "dropout", 0.1)
    transformer_pointer_generator_vaswani_wmt_en_de_big(args)


@register_model_architecture(
    "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de_big"
)
def transformer_pointer_generator_wmt_en_de_big(args):
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    transformer_pointer_generator_vaswani_wmt_en_de_big(args)


# default parameters used in tensor2tensor implementation
@register_model_architecture(
    "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de_big_t2t"
)
def transformer_pointer_generator_wmt_en_de_big_t2t(args):
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.activation_dropout = getattr(args, "activation_dropout", 0.1)
    transformer_pointer_generator_vaswani_wmt_en_de_big(args)