File size: 6,037 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.criterions import LegacyFairseqCriterion, register_criterion
from fairseq.data import encoders


@register_criterion("wsc")
class WSCCriterion(LegacyFairseqCriterion):
    def __init__(self, args, task):
        super().__init__(args, task)
        if self.args.save_predictions is not None:
            self.prediction_h = open(self.args.save_predictions, "w")
        else:
            self.prediction_h = None
        self.bpe = encoders.build_bpe(args.bpe)
        self.tokenizer = encoders.build_tokenizer(args.tokenizer)

    def __del__(self):
        if self.prediction_h is not None:
            self.prediction_h.close()

    @staticmethod
    def add_args(parser):
        """Add criterion-specific arguments to the parser."""
        parser.add_argument("--wsc-margin-alpha", type=float, metavar="A", default=1.0)
        parser.add_argument("--wsc-margin-beta", type=float, metavar="B", default=0.0)
        parser.add_argument(
            "--wsc-cross-entropy",
            action="store_true",
            help="use cross entropy formulation instead of margin loss",
        )
        parser.add_argument(
            "--save-predictions", metavar="FILE", help="file to save predictions to"
        )

    def get_masked_input(self, tokens, mask):
        masked_tokens = tokens.clone()
        masked_tokens[mask] = self.task.mask
        return masked_tokens

    def get_lprobs(self, model, tokens, mask):
        logits, _ = model(src_tokens=self.get_masked_input(tokens, mask))
        lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float)
        scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1)
        mask = mask.type_as(scores)
        scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1)
        return scores

    def get_loss(self, query_lprobs, cand_lprobs):
        if self.args.wsc_cross_entropy:
            return F.cross_entropy(
                torch.cat([query_lprobs, cand_lprobs]).unsqueeze(0),
                query_lprobs.new([0]).long(),
            )
        else:
            return (
                -query_lprobs
                + self.args.wsc_margin_alpha
                * (cand_lprobs - query_lprobs + self.args.wsc_margin_beta).clamp(min=0)
            ).sum()

    def forward(self, model, sample, reduce=True):
        # compute loss and accuracy
        loss, nloss = 0.0, 0
        ncorrect, nqueries = 0, 0

        for i, label in enumerate(sample["labels"]):
            query_lprobs = self.get_lprobs(
                model,
                sample["query_tokens"][i].unsqueeze(0),
                sample["query_masks"][i].unsqueeze(0),
            )
            cand_lprobs = self.get_lprobs(
                model,
                sample["candidate_tokens"][i],
                sample["candidate_masks"][i],
            )

            pred = (query_lprobs >= cand_lprobs).all().item()

            if label is not None:
                label = 1 if label else 0
                ncorrect += 1 if pred == label else 0
                nqueries += 1

            if label:
                # only compute a loss for positive instances
                nloss += 1
                loss += self.get_loss(query_lprobs, cand_lprobs)

            id = sample["id"][i].item()
            if self.prediction_h is not None:
                print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h)

        if nloss == 0:
            loss = torch.tensor(0.0, requires_grad=True)

        sample_size = nqueries if nqueries > 0 else 1
        logging_output = {
            "loss": utils.item(loss.data) if reduce else loss.data,
            "ntokens": sample["ntokens"],
            "nsentences": sample["nsentences"],
            "sample_size": sample_size,
            "ncorrect": ncorrect,
            "nqueries": nqueries,
        }
        return loss, sample_size, logging_output

    @staticmethod
    def aggregate_logging_outputs(logging_outputs):
        """Aggregate logging outputs from data parallel training."""
        loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
        ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
        nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
        sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)

        agg_output = {
            "loss": loss_sum / sample_size / math.log(2),
            "ntokens": ntokens,
            "nsentences": nsentences,
            "sample_size": sample_size,
        }

        ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs)
        nqueries = sum(log.get("nqueries", 0) for log in logging_outputs)
        if nqueries > 0:
            agg_output["accuracy"] = ncorrect / float(nqueries)

        return agg_output


@register_criterion("winogrande")
class WinograndeCriterion(WSCCriterion):
    def forward(self, model, sample, reduce=True):
        # compute loss and accuracy
        query_lprobs = self.get_lprobs(
            model,
            sample["query_tokens"],
            sample["query_masks"],
        )
        cand_lprobs = self.get_lprobs(
            model,
            sample["candidate_tokens"],
            sample["candidate_masks"],
        )
        pred = query_lprobs >= cand_lprobs
        loss = self.get_loss(query_lprobs, cand_lprobs)

        sample_size = sample["query_tokens"].size(0)
        ncorrect = pred.sum().item()
        logging_output = {
            "loss": utils.item(loss.data) if reduce else loss.data,
            "ntokens": sample["ntokens"],
            "nsentences": sample["nsentences"],
            "sample_size": sample_size,
            "ncorrect": ncorrect,
            "nqueries": sample_size,
        }
        return loss, sample_size, logging_output