Spaces:
Runtime error
Runtime error
File size: 10,185 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, NamedTuple, Optional
import torch
import torch.nn as nn
from examples.simultaneous_translation.modules.monotonic_transformer_layer import (
TransformerMonotonicDecoderLayer,
TransformerMonotonicEncoderLayer,
)
from fairseq.models import (
register_model,
register_model_architecture,
)
from fairseq.models.transformer import (
TransformerModel,
TransformerEncoder,
TransformerDecoder,
base_architecture,
transformer_iwslt_de_en,
transformer_vaswani_wmt_en_de_big,
tiny_architecture
)
from torch import Tensor
DEFAULT_MAX_SOURCE_POSITIONS = 1024
DEFAULT_MAX_TARGET_POSITIONS = 1024
READ_ACTION = 0
WRITE_ACTION = 1
TransformerMonotonicDecoderOut = NamedTuple(
"TransformerMonotonicDecoderOut",
[
("action", int),
("p_choose", Optional[Tensor]),
("attn_list", Optional[List[Optional[Dict[str, Tensor]]]]),
("encoder_out", Optional[Dict[str, List[Tensor]]]),
("encoder_padding_mask", Optional[Tensor]),
],
)
@register_model("transformer_unidirectional")
class TransformerUnidirectionalModel(TransformerModel):
@classmethod
def build_encoder(cls, args, src_dict, embed_tokens):
return TransformerMonotonicEncoder(args, src_dict, embed_tokens)
@register_model("transformer_monotonic")
class TransformerModelSimulTrans(TransformerModel):
@classmethod
def build_encoder(cls, args, src_dict, embed_tokens):
return TransformerMonotonicEncoder(args, src_dict, embed_tokens)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
return TransformerMonotonicDecoder(args, tgt_dict, embed_tokens)
class TransformerMonotonicEncoder(TransformerEncoder):
def __init__(self, args, dictionary, embed_tokens):
super().__init__(args, dictionary, embed_tokens)
self.dictionary = dictionary
self.layers = nn.ModuleList([])
self.layers.extend(
[
TransformerMonotonicEncoderLayer(args)
for i in range(args.encoder_layers)
]
)
class TransformerMonotonicDecoder(TransformerDecoder):
"""
Transformer decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`TransformerDecoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): decoding dictionary
embed_tokens (torch.nn.Embedding): output embedding
no_encoder_attn (bool, optional): whether to attend to encoder outputs
(default: False).
"""
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False)
self.dictionary = dictionary
self.layers = nn.ModuleList([])
self.layers.extend(
[
TransformerMonotonicDecoderLayer(args)
for _ in range(args.decoder_layers)
]
)
self.policy_criterion = getattr(args, "policy_criterion", "any")
self.num_updates = None
def set_num_updates(self, num_updates):
self.num_updates = num_updates
def pre_attention(
self,
prev_output_tokens,
encoder_out_dict: Dict[str, List[Tensor]],
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
):
positions = (
self.embed_positions(
prev_output_tokens,
incremental_state=incremental_state,
)
if self.embed_positions is not None
else None
)
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
if positions is not None:
positions = positions[:, -1:]
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(prev_output_tokens)
if self.project_in_dim is not None:
x = self.project_in_dim(x)
if positions is not None:
x += positions
x = self.dropout_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
encoder_out = encoder_out_dict["encoder_out"][0]
if "encoder_padding_mask" in encoder_out_dict:
encoder_padding_mask = (
encoder_out_dict["encoder_padding_mask"][0]
if encoder_out_dict["encoder_padding_mask"]
and len(encoder_out_dict["encoder_padding_mask"]) > 0
else None
)
else:
encoder_padding_mask = None
return x, encoder_out, encoder_padding_mask
def post_attention(self, x):
if self.layer_norm is not None:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if self.project_out_dim is not None:
x = self.project_out_dim(x)
return x
def clean_cache(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
end_id: Optional[int] = None,
):
"""
Clean cache in the monotonic layers.
The cache is generated because of a forward pass of decoder has run but no prediction,
so that the self attention key value in decoder is written in the incremental state.
end_id is the last idx of the layers
"""
if end_id is None:
end_id = len(self.layers)
for index, layer in enumerate(self.layers):
if index < end_id:
layer.prune_incremental_state(incremental_state)
def extract_features(
self,
prev_output_tokens,
encoder_out: Optional[Dict[str, List[Tensor]]],
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
full_context_alignment: bool = False, # unused
alignment_layer: Optional[int] = None, # unused
alignment_heads: Optional[int] = None, # unsed
):
"""
Similar to *forward* but only return features.
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
"""
# incremental_state = None
assert encoder_out is not None
(x, encoder_outs, encoder_padding_mask) = self.pre_attention(
prev_output_tokens, encoder_out, incremental_state
)
attn = None
inner_states = [x]
attn_list: List[Optional[Dict[str, Tensor]]] = []
p_choose = torch.tensor([1.0])
for i, layer in enumerate(self.layers):
x, attn, _ = layer(
x=x,
encoder_out=encoder_outs,
encoder_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
self_attn_mask=self.buffered_future_mask(x)
if incremental_state is None
else None,
)
inner_states.append(x)
attn_list.append(attn)
if incremental_state is not None:
if_online = incremental_state["online"]["only"]
assert if_online is not None
if if_online.to(torch.bool):
# Online indicates that the encoder states are still changing
assert attn is not None
if self.policy_criterion == "any":
# Any head decide to read than read
head_read = layer.encoder_attn._get_monotonic_buffer(incremental_state)["head_read"]
assert head_read is not None
if head_read.any():
# We need to prune the last self_attn saved_state
# if model decide not to read
# otherwise there will be duplicated saved_state
self.clean_cache(incremental_state, i + 1)
return x, TransformerMonotonicDecoderOut(
action=0,
p_choose=p_choose,
attn_list=None,
encoder_out=None,
encoder_padding_mask=None,
)
x = self.post_attention(x)
return x, TransformerMonotonicDecoderOut(
action=1,
p_choose=p_choose,
attn_list=attn_list,
encoder_out=encoder_out,
encoder_padding_mask=encoder_padding_mask,
)
@register_model_architecture("transformer_monotonic", "transformer_monotonic")
def base_monotonic_architecture(args):
base_architecture(args)
args.encoder_unidirectional = getattr(args, "encoder_unidirectional", False)
@register_model_architecture(
"transformer_monotonic", "transformer_monotonic_iwslt_de_en"
)
def transformer_monotonic_iwslt_de_en(args):
transformer_iwslt_de_en(args)
base_monotonic_architecture(args)
# parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017)
@register_model_architecture(
"transformer_monotonic", "transformer_monotonic_vaswani_wmt_en_de_big"
)
def transformer_monotonic_vaswani_wmt_en_de_big(args):
transformer_vaswani_wmt_en_de_big(args)
@register_model_architecture(
"transformer_monotonic", "transformer_monotonic_vaswani_wmt_en_fr_big"
)
def transformer_monotonic_vaswani_wmt_en_fr_big(args):
transformer_monotonic_vaswani_wmt_en_fr_big(args)
@register_model_architecture(
"transformer_unidirectional", "transformer_unidirectional_iwslt_de_en"
)
def transformer_unidirectional_iwslt_de_en(args):
transformer_iwslt_de_en(args)
@register_model_architecture("transformer_monotonic", "transformer_monotonic_tiny")
def monotonic_tiny_architecture(args):
tiny_architecture(args)
base_monotonic_architecture(args)
|