File size: 16,858 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
from torch import Tensor
import torch.nn as nn

from examples.simultaneous_translation.utils.p_choose_strategy import (
    learnable_p_choose,
    waitk_p_choose
)

from examples.simultaneous_translation.utils.monotonic_attention import (
    expected_alignment_from_p_choose,
    expected_soft_attention,
    mass_preservation,
)
from fairseq.modules import MultiheadAttention

from . import register_monotonic_attention
from typing import Dict, Optional


@register_monotonic_attention("hard_aligned")
class MonotonicAttention(MultiheadAttention):
    """
    Abstract class of monotonic attentions
    """
    k_in_proj: Dict[str, nn.Linear]
    q_in_proj: Dict[str, nn.Linear]

    def __init__(self, args):
        super().__init__(
            embed_dim=args.decoder_embed_dim,
            num_heads=args.decoder_attention_heads,
            kdim=getattr(args, "encoder_embed_dim", None),
            vdim=getattr(args, "encoder_embed_dim", None),
            dropout=args.attention_dropout,
            encoder_decoder_attention=True,
        )

        self.soft_attention = False

        self.eps = getattr(args, "attention_eps", True)
        self.mass_preservation = getattr(args, "mass_preservation", True)

        self.noise_type = args.noise_type
        self.noise_mean = args.noise_mean
        self.noise_var = args.noise_var

        self.energy_bias_init = args.energy_bias_init
        self.energy_bias = (
            nn.Parameter(self.energy_bias_init * torch.ones([1]))
            if args.energy_bias is True
            else 0
        )

        self.k_in_proj = {"monotonic": self.k_proj}
        self.q_in_proj = {"monotonic": self.q_proj}
        self.chunk_size = None

    @staticmethod
    def add_args(parser):
        # fmt: off
        parser.add_argument('--no-mass-preservation', action="store_false",
                            dest="mass_preservation",
                            help='Do not stay on the last token when decoding')
        parser.add_argument('--mass-preservation', action="store_true",
                            dest="mass_preservation",
                            help='Stay on the last token when decoding')
        parser.set_defaults(mass_preservation=True)
        parser.add_argument('--noise-var', type=float, default=1.0,
                            help='Variance of discretness noise')
        parser.add_argument('--noise-mean', type=float, default=0.0,
                            help='Mean of discretness noise')
        parser.add_argument('--noise-type', type=str, default="flat",
                            help='Type of discretness noise')
        parser.add_argument('--energy-bias', action="store_true",
                            default=False,
                            help='Bias for energy')
        parser.add_argument('--energy-bias-init', type=float, default=-2.0,
                            help='Initial value of the bias for energy')
        parser.add_argument('--attention-eps', type=float, default=1e-6,
                            help='Epsilon when calculating expected attention')

    def energy_from_qk(
        self,
        query: Tensor,
        key: Tensor,
        energy_type: str,
        key_padding_mask: Optional[Tensor] = None,
        bias: int = 0
    ):
        """
        Compute energy from query and key
        q_func_value is a tuple looks like
        (q_proj_func, q_tensor)
        q_tensor size: bsz, tgt_len, emb_dim
        k_tensor size: bsz, src_len, emb_dim
        key_padding_mask size: bsz, src_len
        attn_mask: bsz, src_len
        """

        length, bsz, _ = query.size()
        q = self.q_in_proj[energy_type].forward(query)
        q = (
            q.contiguous()
            .view(length, bsz * self.num_heads, self.head_dim)
            .transpose(0, 1)
        )
        q = q * self.scaling
        length, bsz, _ = key.size()
        k = self.k_in_proj[energy_type].forward(key)
        k = (
            k.contiguous()
            .view(length, bsz * self.num_heads, self.head_dim)
            .transpose(0, 1)
        )

        energy = torch.bmm(q, k.transpose(1, 2)) + bias

        if key_padding_mask is not None:
            energy = energy.masked_fill(
                key_padding_mask.unsqueeze(1).to(torch.bool),
                - float("inf")
            )

        return energy

    def p_choose_from_qk(self, query, key, key_padding_mask, incremental_states=None):
        monotonic_energy = self.energy_from_qk(
            query,
            key,
            "monotonic",
            key_padding_mask=key_padding_mask,
            bias=self.energy_bias,
        )

        p_choose = learnable_p_choose(
            monotonic_energy,
            self.noise_mean,
            self.noise_var,
            self.training
        )
        return p_choose

    def p_choose(self, query, key, key_padding_mask, incremental_states=None):
        return self.p_choose_from_qk(self, query, key, key_padding_mask)

    def monotonic_attention_process_infer(
        self,
        query: Optional[Tensor],
        key: Optional[Tensor],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
    ):
        """
        Monotonic attention at inference time
        Notice that this function is designed for simuleval not sequence_generator
        """
        assert query is not None
        assert key is not None

        if query.size(1) != 1:
            raise RuntimeError(
                "Simultaneous translation models don't support batch decoding."
            )
        # 1. compute stepwise probability
        p_choose = self.p_choose(
            query, key, None, incremental_state
        ).squeeze(1)

        # 2. Compute the alpha
        src_len = key.size(0)
        # Maximum steps allows in this iteration
        max_steps = src_len - 1 if self.mass_preservation else src_len
        monotonic_cache = self._get_monotonic_buffer(incremental_state)
        # Step for each head
        monotonic_step = monotonic_cache.get(
            'head_step',
            p_choose.new_zeros(1, self.num_heads).long()
        )
        assert monotonic_step is not None
        finish_read = monotonic_step.eq(max_steps)
        p_choose_i = torch.tensor(1)

        while finish_read.sum().item() < self.num_heads:
            # p_choose: self.num_heads, src_len
            # only choose the p at monotonic steps
            # p_choose_i: 1, self.num_heads
            p_choose_i = (
                p_choose.gather(
                    1,
                    monotonic_step
                    .clamp(0, src_len - 1),
                )
            )

            read_one_step = (
                (p_choose_i < 0.5)
                .type_as(monotonic_step)
                .masked_fill(finish_read, 0)
            )
            # 1 x bsz
            # sample actions on unfinished seq
            # 0 means stay, finish reading
            # 1 means leave, continue reading

            monotonic_step += read_one_step

            finish_read = monotonic_step.eq(max_steps) | (read_one_step == 0)

        # p_choose at last steps
        p_choose_i = (
            p_choose.gather(
                1,
                monotonic_step
                .clamp(0, src_len - 1),
            )
        )

        monotonic_cache["head_step"] = monotonic_step
        # Whether a head is looking for new input
        monotonic_cache["head_read"] = (
            monotonic_step.eq(max_steps) & (p_choose_i < 0.5)
        )
        self._set_monotonic_buffer(incremental_state, monotonic_cache)

        # 2. Update alpha
        alpha = (
            p_choose
            .new_zeros([self.num_heads, src_len])
            .scatter(
                1,
                (monotonic_step)
                .view(self.num_heads, 1).clamp(0, src_len - 1),
                1
            )
        )

        if not self.mass_preservation:
            alpha = alpha.masked_fill(
                (monotonic_step == max_steps)
                .view(self.num_heads, 1),
                0
            )

        # 4. Compute Beta
        if self.soft_attention:
            monotonic_step = monotonic_step.t()
            beta_mask = torch.arange(src_len).expand_as(alpha).gt(monotonic_step).unsqueeze(1)
            # If it's soft attention just do softmax on current context
            soft_energy = self.energy_from_qk(
                query,
                key,
                "soft"
            )
            beta = torch.nn.functional.softmax(
                soft_energy.masked_fill(beta_mask, -float("inf")), dim=-1
            )
            # It could happen that a head doesn't move at all
            beta = beta.masked_fill(monotonic_step.eq(0).unsqueeze(1), 0)
        else:
            # If it's hard attention just select the last state
            beta = alpha

        return p_choose, alpha, beta

    def monotonic_attention_process_train(
        self,
        query: Optional[Tensor],
        key: Optional[Tensor],
        key_padding_mask: Optional[Tensor] = None,
    ):
        """
        Calculating monotonic attention process for training
        Including:
            stepwise probability: p_choose
            expected hard alignment: alpha
            expected soft attention: beta
        """
        assert query is not None
        assert key is not None

        # 1. compute stepwise probability
        p_choose = self.p_choose_from_qk(query, key, key_padding_mask)

        # 2. compute expected_alignment
        alpha = expected_alignment_from_p_choose(
            p_choose,
            key_padding_mask,
            eps=self.eps,
        )

        if self.mass_preservation:
            alpha = mass_preservation(
                alpha, key_padding_mask
            )

        # 3. compute expected soft attention (soft aligned model only)
        if self.soft_attention:
            soft_energy = self.energy_from_qk(
                query,
                key,
                "soft",
                key_padding_mask=None,
            )

            beta = expected_soft_attention(
                alpha,
                soft_energy,
                padding_mask=key_padding_mask,
                chunk_size=self.chunk_size,
                eps=self.eps,
            )
        else:
            beta = alpha
            soft_energy = alpha

        return p_choose, alpha, beta, soft_energy

    def forward(
        self,
        query: Optional[Tensor],
        key: Optional[Tensor],
        value: Optional[Tensor],
        key_padding_mask: Optional[Tensor] = None,
        attn_mask: Optional[Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        need_weights: bool = True, static_kv: bool = False, need_head_weights: bool = False,
    ):
        """
        query: tgt_len, bsz, embed_dim
        key: src_len, bsz, embed_dim
        value: src_len, bsz, embed_dim
        """

        assert attn_mask is None
        assert query is not None
        assert key is not None
        assert value is not None

        tgt_len, bsz, embed_dim = query.size()
        src_len = value.size(0)

        if key_padding_mask is not None:
            assert not key_padding_mask[:, 0].any(), (
                "Only right padding is supported."
            )
            key_padding_mask = (
                key_padding_mask
                .unsqueeze(1)
                .expand([bsz, self.num_heads, src_len])
                .contiguous()
                .view(-1, src_len)
            )

        if incremental_state is not None:
            # Inference
            (
                p_choose, alpha, beta
            ) = self.monotonic_attention_process_infer(
                query, key, incremental_state
            )
            soft_energy = beta
        else:
            # Train
            (
                p_choose, alpha, beta, soft_energy
            ) = self.monotonic_attention_process_train(
                query, key, key_padding_mask
            )

        v = self.v_proj(value)
        length, bsz, _ = v.size()
        v = (
            v.contiguous()
            .view(length, bsz * self.num_heads, self.head_dim)
            .transpose(0, 1)
        )

        attn = torch.bmm(beta.type_as(v), v)

        attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)

        attn = self.out_proj(attn)

        p_choose = p_choose.view(bsz, self.num_heads, tgt_len, src_len)
        alpha = alpha.view(bsz, self.num_heads, tgt_len, src_len)
        beta = beta.view(bsz, self.num_heads, tgt_len, src_len)

        return attn, {
            "p_choose": p_choose,
            "alpha": alpha,
            "beta": beta,
        }

    def _get_monotonic_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]):
        maybe_incremental_state = self.get_incremental_state(
            incremental_state,
            'monotonic',
        )
        if maybe_incremental_state is None:
            typed_empty_dict: Dict[str, Optional[Tensor]] = {}
            return typed_empty_dict
        else:
            return maybe_incremental_state

    def _set_monotonic_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], buffer: Dict[str, Optional[Tensor]]):
        self.set_incremental_state(
            incremental_state,
            'monotonic',
            buffer,
        )


@register_monotonic_attention("infinite_lookback")
class MonotonicInfiniteLookbackAttention(
    MonotonicAttention
):
    def __init__(self, args):
        super().__init__(args)
        self.soft_attention = True
        self.init_soft_attention()

    def init_soft_attention(self):
        self.k_proj_soft = nn.Linear(self.kdim, self.embed_dim, bias=True)
        self.q_proj_soft = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
        self.k_in_proj["soft"] = self.k_proj_soft
        self.q_in_proj["soft"] = self.q_proj_soft

        if self.qkv_same_dim:
            # Empirically observed the convergence to be much better with
            # the scaled initialization
            nn.init.xavier_uniform_(
                self.k_in_proj["soft"].weight, gain=1 / math.sqrt(2)
            )
            nn.init.xavier_uniform_(
                self.q_in_proj["soft"].weight, gain=1 / math.sqrt(2)
            )
        else:
            nn.init.xavier_uniform_(self.k_in_proj["soft"].weight)
            nn.init.xavier_uniform_(self.q_in_proj["soft"].weight)


@register_monotonic_attention("waitk")
class WaitKAttention(
    MonotonicInfiniteLookbackAttention
):
    """
    STACL: Simultaneous Translation with Implicit Anticipation and
    Controllable Latency using Prefix-to-Prefix Framework
    https://www.aclweb.org/anthology/P19-1289/
    """
    def __init__(self, args):
        super().__init__(args)
        self.q_in_proj["soft"] = self.q_in_proj["monotonic"]
        self.k_in_proj["soft"] = self.k_in_proj["monotonic"]

        self.waitk_lagging = args.waitk_lagging
        assert self.waitk_lagging > 0, (
            f"Lagging has to been larger than 0, get {self.waitk_lagging}."
        )

    @staticmethod
    def add_args(parser):
        super(
            MonotonicInfiniteLookbackAttention,
            MonotonicInfiniteLookbackAttention
        ).add_args(parser)

        parser.add_argument(
            "--waitk-lagging", type=int, required=True, help="Wait K lagging"
        )

    def p_choose_from_qk(
        self,
        query: Optional[Tensor],
        key: Optional[Tensor],
        key_padding_mask: Optional[Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
    ):
        assert query is not None
        assert key is not None

        p_choose = waitk_p_choose(
            tgt_len=query.size(0),
            src_len=key.size(0),
            bsz=query.size(1) * self.num_heads,
            waitk_lagging=self.waitk_lagging,
            key_padding_mask=key_padding_mask,
            incremental_state=incremental_state,
        )

        return p_choose.to(query)


@register_monotonic_attention("chunkwise")
class ChunkwiseAttention(
    MonotonicInfiniteLookbackAttention
):
    def __init__(self, args):
        super().__init__(args)
        self.chunk_size = args.mocha_chunk_size
        assert self.chunk_size > 1

    @staticmethod
    def add_args(parser):
        super(
            MonotonicInfiniteLookbackAttention
        ).add_args(parser)

        parser.add_argument(
            "--mocha-chunk-size", type=int,
            required=True, help="Mocha chunk size"
        )