File size: 5,870 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python3

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
from examples.speech_recognition.data.replabels import pack_replabels
from fairseq import utils
from fairseq.criterions import FairseqCriterion, register_criterion


@register_criterion("asg_loss")
class ASGCriterion(FairseqCriterion):
    @staticmethod
    def add_args(parser):
        group = parser.add_argument_group("ASG Loss")
        group.add_argument(
            "--asg-transitions-init",
            help="initial diagonal value of transition matrix",
            type=float,
            default=0.0,
        )
        group.add_argument(
            "--max-replabel", help="maximum # of replabels", type=int, default=2
        )
        group.add_argument(
            "--linseg-updates",
            help="# of training updates to use LinSeg initialization",
            type=int,
            default=0,
        )
        group.add_argument(
            "--hide-linseg-messages",
            help="hide messages about LinSeg initialization",
            action="store_true",
        )

    def __init__(
        self,
        task,
        silence_token,
        asg_transitions_init,
        max_replabel,
        linseg_updates,
        hide_linseg_messages,
    ):
        from flashlight.lib.sequence.criterion import ASGLoss, CriterionScaleMode

        super().__init__(task)
        self.tgt_dict = task.target_dictionary
        self.eos = self.tgt_dict.eos()
        self.silence = (
            self.tgt_dict.index(silence_token)
            if silence_token in self.tgt_dict
            else None
        )
        self.max_replabel = max_replabel

        num_labels = len(self.tgt_dict)
        self.asg = ASGLoss(num_labels, scale_mode=CriterionScaleMode.TARGET_SZ_SQRT)
        self.asg.trans = torch.nn.Parameter(
            asg_transitions_init * torch.eye(num_labels), requires_grad=True
        )

        self.linseg_progress = torch.nn.Parameter(
            torch.tensor([0], dtype=torch.int), requires_grad=False
        )
        self.linseg_maximum = linseg_updates
        self.linseg_message_state = "none" if hide_linseg_messages else "start"

    @classmethod
    def build_criterion(cls, args, task):
        return cls(
            task,
            args.silence_token,
            args.asg_transitions_init,
            args.max_replabel,
            args.linseg_updates,
            args.hide_linseg_messages,
        )

    def linseg_step(self):
        if not self.training:
            return False
        if self.linseg_progress.item() < self.linseg_maximum:
            if self.linseg_message_state == "start":
                print("| using LinSeg to initialize ASG")
                self.linseg_message_state = "finish"
            self.linseg_progress.add_(1)
            return True
        elif self.linseg_message_state == "finish":
            print("| finished LinSeg initialization")
            self.linseg_message_state = "none"
        return False

    def replace_eos_with_silence(self, tgt):
        if tgt[-1] != self.eos:
            return tgt
        elif self.silence is None or (len(tgt) > 1 and tgt[-2] == self.silence):
            return tgt[:-1]
        else:
            return tgt[:-1] + [self.silence]

    def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """

        net_output = model(**sample["net_input"])
        emissions = net_output["encoder_out"].transpose(0, 1).contiguous()
        B = emissions.size(0)
        T = emissions.size(1)
        device = emissions.device

        target = torch.IntTensor(B, T)
        target_size = torch.IntTensor(B)
        using_linseg = self.linseg_step()

        for b in range(B):
            initial_target_size = sample["target_lengths"][b].item()
            if initial_target_size == 0:
                raise ValueError("target size cannot be zero")

            tgt = sample["target"][b, :initial_target_size].tolist()
            tgt = self.replace_eos_with_silence(tgt)
            tgt = pack_replabels(tgt, self.tgt_dict, self.max_replabel)
            tgt = tgt[:T]

            if using_linseg:
                tgt = [tgt[t * len(tgt) // T] for t in range(T)]

            target[b][: len(tgt)] = torch.IntTensor(tgt)
            target_size[b] = len(tgt)

        loss = self.asg.forward(emissions, target.to(device), target_size.to(device))

        if reduce:
            loss = torch.sum(loss)

        sample_size = (
            sample["target"].size(0) if self.args.sentence_avg else sample["ntokens"]
        )
        logging_output = {
            "loss": utils.item(loss.data) if reduce else loss.data,
            "ntokens": sample["ntokens"],
            "nsentences": sample["target"].size(0),
            "sample_size": sample_size,
        }
        return loss, sample_size, logging_output

    @staticmethod
    def aggregate_logging_outputs(logging_outputs):
        """Aggregate logging outputs from data parallel training."""
        loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
        ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
        nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
        sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
        agg_output = {
            "loss": loss_sum / nsentences,
            "ntokens": ntokens,
            "nsentences": nsentences,
            "sample_size": sample_size,
        }
        return agg_output