Spaces:
Runtime error
Runtime error
File size: 37,260 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import math
from collections.abc import Iterable
import torch
import torch.nn as nn
from examples.speech_recognition.data.data_utils import lengths_to_encoder_padding_mask
from fairseq import utils
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqEncoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from fairseq.modules import (
LinearizedConvolution,
TransformerDecoderLayer,
TransformerEncoderLayer,
VGGBlock,
)
@register_model("asr_vggtransformer")
class VGGTransformerModel(FairseqEncoderDecoderModel):
"""
Transformers with convolutional context for ASR
https://arxiv.org/abs/1904.11660
"""
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
parser.add_argument(
"--input-feat-per-channel",
type=int,
metavar="N",
help="encoder input dimension per input channel",
)
parser.add_argument(
"--vggblock-enc-config",
type=str,
metavar="EXPR",
help="""
an array of tuples each containing the configuration of one vggblock:
[(out_channels,
conv_kernel_size,
pooling_kernel_size,
num_conv_layers,
use_layer_norm), ...])
""",
)
parser.add_argument(
"--transformer-enc-config",
type=str,
metavar="EXPR",
help=""""
a tuple containing the configuration of the encoder transformer layers
configurations:
[(input_dim,
num_heads,
ffn_dim,
normalize_before,
dropout,
attention_dropout,
relu_dropout), ...]')
""",
)
parser.add_argument(
"--enc-output-dim",
type=int,
metavar="N",
help="""
encoder output dimension, can be None. If specified, projecting the
transformer output to the specified dimension""",
)
parser.add_argument(
"--in-channels",
type=int,
metavar="N",
help="number of encoder input channels",
)
parser.add_argument(
"--tgt-embed-dim",
type=int,
metavar="N",
help="embedding dimension of the decoder target tokens",
)
parser.add_argument(
"--transformer-dec-config",
type=str,
metavar="EXPR",
help="""
a tuple containing the configuration of the decoder transformer layers
configurations:
[(input_dim,
num_heads,
ffn_dim,
normalize_before,
dropout,
attention_dropout,
relu_dropout), ...]
""",
)
parser.add_argument(
"--conv-dec-config",
type=str,
metavar="EXPR",
help="""
an array of tuples for the decoder 1-D convolution config
[(out_channels, conv_kernel_size, use_layer_norm), ...]""",
)
@classmethod
def build_encoder(cls, args, task):
return VGGTransformerEncoder(
input_feat_per_channel=args.input_feat_per_channel,
vggblock_config=eval(args.vggblock_enc_config),
transformer_config=eval(args.transformer_enc_config),
encoder_output_dim=args.enc_output_dim,
in_channels=args.in_channels,
)
@classmethod
def build_decoder(cls, args, task):
return TransformerDecoder(
dictionary=task.target_dictionary,
embed_dim=args.tgt_embed_dim,
transformer_config=eval(args.transformer_dec_config),
conv_config=eval(args.conv_dec_config),
encoder_output_dim=args.enc_output_dim,
)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure that all args are properly defaulted
# (in case there are any new ones)
base_architecture(args)
encoder = cls.build_encoder(args, task)
decoder = cls.build_decoder(args, task)
return cls(encoder, decoder)
def get_normalized_probs(self, net_output, log_probs, sample=None):
# net_output['encoder_out'] is a (B, T, D) tensor
lprobs = super().get_normalized_probs(net_output, log_probs, sample)
lprobs.batch_first = True
return lprobs
DEFAULT_ENC_VGGBLOCK_CONFIG = ((32, 3, 2, 2, False),) * 2
DEFAULT_ENC_TRANSFORMER_CONFIG = ((256, 4, 1024, True, 0.2, 0.2, 0.2),) * 2
# 256: embedding dimension
# 4: number of heads
# 1024: FFN
# True: apply layerNorm before (dropout + resiaul) instead of after
# 0.2 (dropout): dropout after MultiheadAttention and second FC
# 0.2 (attention_dropout): dropout in MultiheadAttention
# 0.2 (relu_dropout): dropout after ReLu
DEFAULT_DEC_TRANSFORMER_CONFIG = ((256, 2, 1024, True, 0.2, 0.2, 0.2),) * 2
DEFAULT_DEC_CONV_CONFIG = ((256, 3, True),) * 2
# TODO: repace transformer encoder config from one liner
# to explicit args to get rid of this transformation
def prepare_transformer_encoder_params(
input_dim,
num_heads,
ffn_dim,
normalize_before,
dropout,
attention_dropout,
relu_dropout,
):
args = argparse.Namespace()
args.encoder_embed_dim = input_dim
args.encoder_attention_heads = num_heads
args.attention_dropout = attention_dropout
args.dropout = dropout
args.activation_dropout = relu_dropout
args.encoder_normalize_before = normalize_before
args.encoder_ffn_embed_dim = ffn_dim
return args
def prepare_transformer_decoder_params(
input_dim,
num_heads,
ffn_dim,
normalize_before,
dropout,
attention_dropout,
relu_dropout,
):
args = argparse.Namespace()
args.encoder_embed_dim = None
args.decoder_embed_dim = input_dim
args.decoder_attention_heads = num_heads
args.attention_dropout = attention_dropout
args.dropout = dropout
args.activation_dropout = relu_dropout
args.decoder_normalize_before = normalize_before
args.decoder_ffn_embed_dim = ffn_dim
return args
class VGGTransformerEncoder(FairseqEncoder):
"""VGG + Transformer encoder"""
def __init__(
self,
input_feat_per_channel,
vggblock_config=DEFAULT_ENC_VGGBLOCK_CONFIG,
transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG,
encoder_output_dim=512,
in_channels=1,
transformer_context=None,
transformer_sampling=None,
):
"""constructor for VGGTransformerEncoder
Args:
- input_feat_per_channel: feature dim (not including stacked,
just base feature)
- in_channel: # input channels (e.g., if stack 8 feature vector
together, this is 8)
- vggblock_config: configuration of vggblock, see comments on
DEFAULT_ENC_VGGBLOCK_CONFIG
- transformer_config: configuration of transformer layer, see comments
on DEFAULT_ENC_TRANSFORMER_CONFIG
- encoder_output_dim: final transformer output embedding dimension
- transformer_context: (left, right) if set, self-attention will be focused
on (t-left, t+right)
- transformer_sampling: an iterable of int, must match with
len(transformer_config), transformer_sampling[i] indicates sampling
factor for i-th transformer layer, after multihead att and feedfoward
part
"""
super().__init__(None)
self.num_vggblocks = 0
if vggblock_config is not None:
if not isinstance(vggblock_config, Iterable):
raise ValueError("vggblock_config is not iterable")
self.num_vggblocks = len(vggblock_config)
self.conv_layers = nn.ModuleList()
self.in_channels = in_channels
self.input_dim = input_feat_per_channel
self.pooling_kernel_sizes = []
if vggblock_config is not None:
for _, config in enumerate(vggblock_config):
(
out_channels,
conv_kernel_size,
pooling_kernel_size,
num_conv_layers,
layer_norm,
) = config
self.conv_layers.append(
VGGBlock(
in_channels,
out_channels,
conv_kernel_size,
pooling_kernel_size,
num_conv_layers,
input_dim=input_feat_per_channel,
layer_norm=layer_norm,
)
)
self.pooling_kernel_sizes.append(pooling_kernel_size)
in_channels = out_channels
input_feat_per_channel = self.conv_layers[-1].output_dim
transformer_input_dim = self.infer_conv_output_dim(
self.in_channels, self.input_dim
)
# transformer_input_dim is the output dimension of VGG part
self.validate_transformer_config(transformer_config)
self.transformer_context = self.parse_transformer_context(transformer_context)
self.transformer_sampling = self.parse_transformer_sampling(
transformer_sampling, len(transformer_config)
)
self.transformer_layers = nn.ModuleList()
if transformer_input_dim != transformer_config[0][0]:
self.transformer_layers.append(
Linear(transformer_input_dim, transformer_config[0][0])
)
self.transformer_layers.append(
TransformerEncoderLayer(
prepare_transformer_encoder_params(*transformer_config[0])
)
)
for i in range(1, len(transformer_config)):
if transformer_config[i - 1][0] != transformer_config[i][0]:
self.transformer_layers.append(
Linear(transformer_config[i - 1][0], transformer_config[i][0])
)
self.transformer_layers.append(
TransformerEncoderLayer(
prepare_transformer_encoder_params(*transformer_config[i])
)
)
self.encoder_output_dim = encoder_output_dim
self.transformer_layers.extend(
[
Linear(transformer_config[-1][0], encoder_output_dim),
LayerNorm(encoder_output_dim),
]
)
def forward(self, src_tokens, src_lengths, **kwargs):
"""
src_tokens: padded tensor (B, T, C * feat)
src_lengths: tensor of original lengths of input utterances (B,)
"""
bsz, max_seq_len, _ = src_tokens.size()
x = src_tokens.view(bsz, max_seq_len, self.in_channels, self.input_dim)
x = x.transpose(1, 2).contiguous()
# (B, C, T, feat)
for layer_idx in range(len(self.conv_layers)):
x = self.conv_layers[layer_idx](x)
bsz, _, output_seq_len, _ = x.size()
# (B, C, T, feat) -> (B, T, C, feat) -> (T, B, C, feat) -> (T, B, C * feat)
x = x.transpose(1, 2).transpose(0, 1)
x = x.contiguous().view(output_seq_len, bsz, -1)
input_lengths = src_lengths.clone()
for s in self.pooling_kernel_sizes:
input_lengths = (input_lengths.float() / s).ceil().long()
encoder_padding_mask, _ = lengths_to_encoder_padding_mask(
input_lengths, batch_first=True
)
if not encoder_padding_mask.any():
encoder_padding_mask = None
subsampling_factor = int(max_seq_len * 1.0 / output_seq_len + 0.5)
attn_mask = self.lengths_to_attn_mask(input_lengths, subsampling_factor)
transformer_layer_idx = 0
for layer_idx in range(len(self.transformer_layers)):
if isinstance(self.transformer_layers[layer_idx], TransformerEncoderLayer):
x = self.transformer_layers[layer_idx](
x, encoder_padding_mask, attn_mask
)
if self.transformer_sampling[transformer_layer_idx] != 1:
sampling_factor = self.transformer_sampling[transformer_layer_idx]
x, encoder_padding_mask, attn_mask = self.slice(
x, encoder_padding_mask, attn_mask, sampling_factor
)
transformer_layer_idx += 1
else:
x = self.transformer_layers[layer_idx](x)
# encoder_padding_maks is a (T x B) tensor, its [t, b] elements indicate
# whether encoder_output[t, b] is valid or not (valid=0, invalid=1)
return {
"encoder_out": x, # (T, B, C)
"encoder_padding_mask": encoder_padding_mask.t()
if encoder_padding_mask is not None
else None,
# (B, T) --> (T, B)
}
def infer_conv_output_dim(self, in_channels, input_dim):
sample_seq_len = 200
sample_bsz = 10
x = torch.randn(sample_bsz, in_channels, sample_seq_len, input_dim)
for i, _ in enumerate(self.conv_layers):
x = self.conv_layers[i](x)
x = x.transpose(1, 2)
mb, seq = x.size()[:2]
return x.contiguous().view(mb, seq, -1).size(-1)
def validate_transformer_config(self, transformer_config):
for config in transformer_config:
input_dim, num_heads = config[:2]
if input_dim % num_heads != 0:
msg = (
"ERROR in transformer config {}: ".format(config)
+ "input dimension {} ".format(input_dim)
+ "not dividable by number of heads {}".format(num_heads)
)
raise ValueError(msg)
def parse_transformer_context(self, transformer_context):
"""
transformer_context can be the following:
- None; indicates no context is used, i.e.,
transformer can access full context
- a tuple/list of two int; indicates left and right context,
any number <0 indicates infinite context
* e.g., (5, 6) indicates that for query at x_t, transformer can
access [t-5, t+6] (inclusive)
* e.g., (-1, 6) indicates that for query at x_t, transformer can
access [0, t+6] (inclusive)
"""
if transformer_context is None:
return None
if not isinstance(transformer_context, Iterable):
raise ValueError("transformer context must be Iterable if it is not None")
if len(transformer_context) != 2:
raise ValueError("transformer context must have length 2")
left_context = transformer_context[0]
if left_context < 0:
left_context = None
right_context = transformer_context[1]
if right_context < 0:
right_context = None
if left_context is None and right_context is None:
return None
return (left_context, right_context)
def parse_transformer_sampling(self, transformer_sampling, num_layers):
"""
parsing transformer sampling configuration
Args:
- transformer_sampling, accepted input:
* None, indicating no sampling
* an Iterable with int (>0) as element
- num_layers, expected number of transformer layers, must match with
the length of transformer_sampling if it is not None
Returns:
- A tuple with length num_layers
"""
if transformer_sampling is None:
return (1,) * num_layers
if not isinstance(transformer_sampling, Iterable):
raise ValueError(
"transformer_sampling must be an iterable if it is not None"
)
if len(transformer_sampling) != num_layers:
raise ValueError(
"transformer_sampling {} does not match with the number "
"of layers {}".format(transformer_sampling, num_layers)
)
for layer, value in enumerate(transformer_sampling):
if not isinstance(value, int):
raise ValueError("Invalid value in transformer_sampling: ")
if value < 1:
raise ValueError(
"{} layer's subsampling is {}.".format(layer, value)
+ " This is not allowed! "
)
return transformer_sampling
def slice(self, embedding, padding_mask, attn_mask, sampling_factor):
"""
embedding is a (T, B, D) tensor
padding_mask is a (B, T) tensor or None
attn_mask is a (T, T) tensor or None
"""
embedding = embedding[::sampling_factor, :, :]
if padding_mask is not None:
padding_mask = padding_mask[:, ::sampling_factor]
if attn_mask is not None:
attn_mask = attn_mask[::sampling_factor, ::sampling_factor]
return embedding, padding_mask, attn_mask
def lengths_to_attn_mask(self, input_lengths, subsampling_factor=1):
"""
create attention mask according to sequence lengths and transformer
context
Args:
- input_lengths: (B, )-shape Int/Long tensor; input_lengths[b] is
the length of b-th sequence
- subsampling_factor: int
* Note that the left_context and right_context is specified in
the input frame-level while input to transformer may already
go through subsampling (e.g., the use of striding in vggblock)
we use subsampling_factor to scale the left/right context
Return:
- a (T, T) binary tensor or None, where T is max(input_lengths)
* if self.transformer_context is None, None
* if left_context is None,
* attn_mask[t, t + right_context + 1:] = 1
* others = 0
* if right_context is None,
* attn_mask[t, 0:t - left_context] = 1
* others = 0
* elsif
* attn_mask[t, t - left_context: t + right_context + 1] = 0
* others = 1
"""
if self.transformer_context is None:
return None
maxT = torch.max(input_lengths).item()
attn_mask = torch.zeros(maxT, maxT)
left_context = self.transformer_context[0]
right_context = self.transformer_context[1]
if left_context is not None:
left_context = math.ceil(self.transformer_context[0] / subsampling_factor)
if right_context is not None:
right_context = math.ceil(self.transformer_context[1] / subsampling_factor)
for t in range(maxT):
if left_context is not None:
st = 0
en = max(st, t - left_context)
attn_mask[t, st:en] = 1
if right_context is not None:
st = t + right_context + 1
st = min(st, maxT - 1)
attn_mask[t, st:] = 1
return attn_mask.to(input_lengths.device)
def reorder_encoder_out(self, encoder_out, new_order):
encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select(
1, new_order
)
if encoder_out["encoder_padding_mask"] is not None:
encoder_out["encoder_padding_mask"] = encoder_out[
"encoder_padding_mask"
].index_select(1, new_order)
return encoder_out
class TransformerDecoder(FairseqIncrementalDecoder):
"""
Transformer decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`TransformerDecoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): decoding dictionary
embed_tokens (torch.nn.Embedding): output embedding
no_encoder_attn (bool, optional): whether to attend to encoder outputs.
Default: ``False``
left_pad (bool, optional): whether the input is left-padded. Default:
``False``
"""
def __init__(
self,
dictionary,
embed_dim=512,
transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG,
conv_config=DEFAULT_DEC_CONV_CONFIG,
encoder_output_dim=512,
):
super().__init__(dictionary)
vocab_size = len(dictionary)
self.padding_idx = dictionary.pad()
self.embed_tokens = Embedding(vocab_size, embed_dim, self.padding_idx)
self.conv_layers = nn.ModuleList()
for i in range(len(conv_config)):
out_channels, kernel_size, layer_norm = conv_config[i]
if i == 0:
conv_layer = LinearizedConv1d(
embed_dim, out_channels, kernel_size, padding=kernel_size - 1
)
else:
conv_layer = LinearizedConv1d(
conv_config[i - 1][0],
out_channels,
kernel_size,
padding=kernel_size - 1,
)
self.conv_layers.append(conv_layer)
if layer_norm:
self.conv_layers.append(nn.LayerNorm(out_channels))
self.conv_layers.append(nn.ReLU())
self.layers = nn.ModuleList()
if conv_config[-1][0] != transformer_config[0][0]:
self.layers.append(Linear(conv_config[-1][0], transformer_config[0][0]))
self.layers.append(
TransformerDecoderLayer(
prepare_transformer_decoder_params(*transformer_config[0])
)
)
for i in range(1, len(transformer_config)):
if transformer_config[i - 1][0] != transformer_config[i][0]:
self.layers.append(
Linear(transformer_config[i - 1][0], transformer_config[i][0])
)
self.layers.append(
TransformerDecoderLayer(
prepare_transformer_decoder_params(*transformer_config[i])
)
)
self.fc_out = Linear(transformer_config[-1][0], vocab_size)
def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None):
"""
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for input feeding/teacher forcing
encoder_out (Tensor, optional): output from the encoder, used for
encoder-side attention
incremental_state (dict): dictionary used for storing state during
:ref:`Incremental decoding`
Returns:
tuple:
- the last decoder layer's output of shape `(batch, tgt_len,
vocab)`
- the last decoder layer's attention weights of shape `(batch,
tgt_len, src_len)`
"""
target_padding_mask = (
(prev_output_tokens == self.padding_idx).to(prev_output_tokens.device)
if incremental_state is None
else None
)
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
# embed tokens
x = self.embed_tokens(prev_output_tokens)
# B x T x C -> T x B x C
x = self._transpose_if_training(x, incremental_state)
for layer in self.conv_layers:
if isinstance(layer, LinearizedConvolution):
x = layer(x, incremental_state)
else:
x = layer(x)
# B x T x C -> T x B x C
x = self._transpose_if_inference(x, incremental_state)
# decoder layers
for layer in self.layers:
if isinstance(layer, TransformerDecoderLayer):
x, *_ = layer(
x,
(encoder_out["encoder_out"] if encoder_out is not None else None),
(
encoder_out["encoder_padding_mask"].t()
if encoder_out["encoder_padding_mask"] is not None
else None
),
incremental_state,
self_attn_mask=(
self.buffered_future_mask(x)
if incremental_state is None
else None
),
self_attn_padding_mask=(
target_padding_mask if incremental_state is None else None
),
)
else:
x = layer(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
x = self.fc_out(x)
return x, None
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
if (
not hasattr(self, "_future_mask")
or self._future_mask is None
or self._future_mask.device != tensor.device
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
)
if self._future_mask.size(0) < dim:
self._future_mask = torch.triu(
utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1
)
return self._future_mask[:dim, :dim]
def _transpose_if_training(self, x, incremental_state):
if incremental_state is None:
x = x.transpose(0, 1)
return x
def _transpose_if_inference(self, x, incremental_state):
if incremental_state:
x = x.transpose(0, 1)
return x
@register_model("asr_vggtransformer_encoder")
class VGGTransformerEncoderModel(FairseqEncoderModel):
def __init__(self, encoder):
super().__init__(encoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
parser.add_argument(
"--input-feat-per-channel",
type=int,
metavar="N",
help="encoder input dimension per input channel",
)
parser.add_argument(
"--vggblock-enc-config",
type=str,
metavar="EXPR",
help="""
an array of tuples each containing the configuration of one vggblock
[(out_channels, conv_kernel_size, pooling_kernel_size,num_conv_layers), ...]
""",
)
parser.add_argument(
"--transformer-enc-config",
type=str,
metavar="EXPR",
help="""
a tuple containing the configuration of the Transformer layers
configurations:
[(input_dim,
num_heads,
ffn_dim,
normalize_before,
dropout,
attention_dropout,
relu_dropout), ]""",
)
parser.add_argument(
"--enc-output-dim",
type=int,
metavar="N",
help="encoder output dimension, projecting the LSTM output",
)
parser.add_argument(
"--in-channels",
type=int,
metavar="N",
help="number of encoder input channels",
)
parser.add_argument(
"--transformer-context",
type=str,
metavar="EXPR",
help="""
either None or a tuple of two ints, indicating left/right context a
transformer can have access to""",
)
parser.add_argument(
"--transformer-sampling",
type=str,
metavar="EXPR",
help="""
either None or a tuple of ints, indicating sampling factor in each layer""",
)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
base_architecture_enconly(args)
encoder = VGGTransformerEncoderOnly(
vocab_size=len(task.target_dictionary),
input_feat_per_channel=args.input_feat_per_channel,
vggblock_config=eval(args.vggblock_enc_config),
transformer_config=eval(args.transformer_enc_config),
encoder_output_dim=args.enc_output_dim,
in_channels=args.in_channels,
transformer_context=eval(args.transformer_context),
transformer_sampling=eval(args.transformer_sampling),
)
return cls(encoder)
def get_normalized_probs(self, net_output, log_probs, sample=None):
# net_output['encoder_out'] is a (T, B, D) tensor
lprobs = super().get_normalized_probs(net_output, log_probs, sample)
# lprobs is a (T, B, D) tensor
# we need to transoose to get (B, T, D) tensor
lprobs = lprobs.transpose(0, 1).contiguous()
lprobs.batch_first = True
return lprobs
class VGGTransformerEncoderOnly(VGGTransformerEncoder):
def __init__(
self,
vocab_size,
input_feat_per_channel,
vggblock_config=DEFAULT_ENC_VGGBLOCK_CONFIG,
transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG,
encoder_output_dim=512,
in_channels=1,
transformer_context=None,
transformer_sampling=None,
):
super().__init__(
input_feat_per_channel=input_feat_per_channel,
vggblock_config=vggblock_config,
transformer_config=transformer_config,
encoder_output_dim=encoder_output_dim,
in_channels=in_channels,
transformer_context=transformer_context,
transformer_sampling=transformer_sampling,
)
self.fc_out = Linear(self.encoder_output_dim, vocab_size)
def forward(self, src_tokens, src_lengths, **kwargs):
"""
src_tokens: padded tensor (B, T, C * feat)
src_lengths: tensor of original lengths of input utterances (B,)
"""
enc_out = super().forward(src_tokens, src_lengths)
x = self.fc_out(enc_out["encoder_out"])
# x = F.log_softmax(x, dim=-1)
# Note: no need this line, because model.get_normalized_prob will call
# log_softmax
return {
"encoder_out": x, # (T, B, C)
"encoder_padding_mask": enc_out["encoder_padding_mask"], # (T, B)
}
def max_positions(self):
"""Maximum input length supported by the encoder."""
return (1e6, 1e6) # an arbitrary large number
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
# nn.init.uniform_(m.weight, -0.1, 0.1)
# nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True, dropout=0):
"""Linear layer (input: N x T x C)"""
m = nn.Linear(in_features, out_features, bias=bias)
# m.weight.data.uniform_(-0.1, 0.1)
# if bias:
# m.bias.data.uniform_(-0.1, 0.1)
return m
def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0, **kwargs):
"""Weight-normalized Conv1d layer optimized for decoding"""
m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs)
std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
nn.init.normal_(m.weight, mean=0, std=std)
nn.init.constant_(m.bias, 0)
return nn.utils.weight_norm(m, dim=2)
def LayerNorm(embedding_dim):
m = nn.LayerNorm(embedding_dim)
return m
# seq2seq models
def base_architecture(args):
args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 40)
args.vggblock_enc_config = getattr(
args, "vggblock_enc_config", DEFAULT_ENC_VGGBLOCK_CONFIG
)
args.transformer_enc_config = getattr(
args, "transformer_enc_config", DEFAULT_ENC_TRANSFORMER_CONFIG
)
args.enc_output_dim = getattr(args, "enc_output_dim", 512)
args.in_channels = getattr(args, "in_channels", 1)
args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 128)
args.transformer_dec_config = getattr(
args, "transformer_dec_config", DEFAULT_ENC_TRANSFORMER_CONFIG
)
args.conv_dec_config = getattr(args, "conv_dec_config", DEFAULT_DEC_CONV_CONFIG)
args.transformer_context = getattr(args, "transformer_context", "None")
@register_model_architecture("asr_vggtransformer", "vggtransformer_1")
def vggtransformer_1(args):
args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
args.vggblock_enc_config = getattr(
args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]"
)
args.transformer_enc_config = getattr(
args,
"transformer_enc_config",
"((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 14",
)
args.enc_output_dim = getattr(args, "enc_output_dim", 1024)
args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 128)
args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4")
args.transformer_dec_config = getattr(
args,
"transformer_dec_config",
"((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 4",
)
@register_model_architecture("asr_vggtransformer", "vggtransformer_2")
def vggtransformer_2(args):
args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
args.vggblock_enc_config = getattr(
args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]"
)
args.transformer_enc_config = getattr(
args,
"transformer_enc_config",
"((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 16",
)
args.enc_output_dim = getattr(args, "enc_output_dim", 1024)
args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 512)
args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4")
args.transformer_dec_config = getattr(
args,
"transformer_dec_config",
"((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 6",
)
@register_model_architecture("asr_vggtransformer", "vggtransformer_base")
def vggtransformer_base(args):
args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
args.vggblock_enc_config = getattr(
args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]"
)
args.transformer_enc_config = getattr(
args, "transformer_enc_config", "((512, 8, 2048, True, 0.15, 0.15, 0.15),) * 12"
)
args.enc_output_dim = getattr(args, "enc_output_dim", 512)
args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 512)
args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4")
args.transformer_dec_config = getattr(
args, "transformer_dec_config", "((512, 8, 2048, True, 0.15, 0.15, 0.15),) * 6"
)
# Size estimations:
# Encoder:
# - vggblock param: 64*1*3*3 + 64*64*3*3 + 128*64*3*3 + 128*128*3 = 258K
# Transformer:
# - input dimension adapter: 2560 x 512 -> 1.31M
# - transformer_layers (x12) --> 37.74M
# * MultiheadAttention: 512*512*3 (in_proj) + 512*512 (out_proj) = 1.048M
# * FFN weight: 512*2048*2 = 2.097M
# - output dimension adapter: 512 x 512 -> 0.26 M
# Decoder:
# - LinearizedConv1d: 512 * 256 * 3 + 256 * 256 * 3 * 3
# - transformer_layer: (x6) --> 25.16M
# * MultiheadAttention (self-attention): 512*512*3 + 512*512 = 1.048M
# * MultiheadAttention (encoder-attention): 512*512*3 + 512*512 = 1.048M
# * FFN: 512*2048*2 = 2.097M
# Final FC:
# - FC: 512*5000 = 256K (assuming vocab size 5K)
# In total:
# ~65 M
# CTC models
def base_architecture_enconly(args):
args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 40)
args.vggblock_enc_config = getattr(
args, "vggblock_enc_config", "[(32, 3, 2, 2, True)] * 2"
)
args.transformer_enc_config = getattr(
args, "transformer_enc_config", "((256, 4, 1024, True, 0.2, 0.2, 0.2),) * 2"
)
args.enc_output_dim = getattr(args, "enc_output_dim", 512)
args.in_channels = getattr(args, "in_channels", 1)
args.transformer_context = getattr(args, "transformer_context", "None")
args.transformer_sampling = getattr(args, "transformer_sampling", "None")
@register_model_architecture("asr_vggtransformer_encoder", "vggtransformer_enc_1")
def vggtransformer_enc_1(args):
# vggtransformer_1 is the same as vggtransformer_enc_big, except the number
# of layers is increased to 16
# keep it here for backward compatiablity purpose
args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
args.vggblock_enc_config = getattr(
args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]"
)
args.transformer_enc_config = getattr(
args,
"transformer_enc_config",
"((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 16",
)
args.enc_output_dim = getattr(args, "enc_output_dim", 1024)
|