Spaces:
Runtime error
Runtime error
File size: 4,674 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
import logging
import warnings
import torch
import numpy as np
from data import data_utils
from data.ofa_dataset import OFADataset
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
def collate(samples, pad_idx, eos_idx):
if len(samples) == 0:
return {}
def merge(key):
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx=eos_idx,
)
src_tokens = merge("source")
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
ref_dict = None
if samples[0].get("ref_dict", None) is not None:
ref_dict = np.array([s['ref_dict'] for s in samples])
constraint_masks = None
if samples[0].get("constraint_mask", None) is not None:
constraint_masks = merge("constraint_mask")
prev_output_tokens = None
target = None
if samples[0].get("target", None) is not None:
target = merge("target")
tgt_lengths = torch.LongTensor(
[s["target"].ne(pad_idx).long().sum() for s in samples]
)
ntokens = tgt_lengths.sum().item()
if samples[0].get("prev_output_tokens", None) is not None:
prev_output_tokens = merge("prev_output_tokens")
else:
ntokens = src_lengths.sum().item()
batch = {
"nsentences": len(samples),
"ntokens": ntokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"prev_output_tokens": prev_output_tokens
},
"ref_dict": ref_dict,
"constraint_masks": constraint_masks,
"target": target,
}
return batch
class QNLIDataset(OFADataset):
def __init__(
self,
split,
dataset,
bpe,
src_dict,
tgt_dict=None,
max_src_length=512,
max_tgt_length=30,
constraint_trie=None,
prompt_type="none"
):
super().__init__(split, dataset, bpe, src_dict, tgt_dict)
self.max_src_length = max_src_length
self.max_tgt_length = max_tgt_length
self.constraint_trie = constraint_trie
self.prompt_type = prompt_type
def __getitem__(self, index):
question, sentence, label = self.dataset[index]
if label == '0' or label == 'not_entailment':
label = 'no'
elif label == '1' or label == 'entailment':
label = 'yes'
else:
raise NotImplementedError
question = ' '.join(question.lower().strip().split()[:self.max_src_length])
sentence = ' '.join(sentence.lower().strip().split()[:self.max_src_length])
src_item = self.encode_text(
' does " {} " contain the answer to question " {} "?'.format(sentence, question)
)
tgt_item = self.encode_text(" {}".format(label))
assert tgt_item.size(0) == 1
ref_dict = {label: 1.0}
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
if self.prompt_type == 'none':
prev_output_item = self.bos_item
target_item = tgt_item
elif self.prompt_type == 'src':
prev_output_item = src_item.clone()
target_item = torch.cat([prev_output_item[1:], tgt_item])
elif self.prompt_type == 'prev_output':
prev_output_item = src_item[:-1].clone()
target_item = torch.cat([prev_output_item[1:], tgt_item])
else:
raise NotImplementedError
target_item[:-1] = self.tgt_dict.pad()
example = {
"source": src_item,
"target": target_item,
"prev_output_tokens": prev_output_item,
"ref_dict": ref_dict,
}
if self.constraint_trie is not None:
constraint_mask = torch.zeros((len(prev_output_item), len(self.tgt_dict))).bool()
constraint_nodes = self.constraint_trie.get_next_layer(self.bos_item.tolist())
constraint_mask[-1][constraint_nodes] = True
example["constraint_mask"] = constraint_mask
return example
def collater(self, samples, pad_to_length=None):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch containing the data of the task
"""
return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
|