Spaces:
Runtime error
Runtime error
File size: 2,050 Bytes
582f2a6 edc435d 582f2a6 edc435d ee21b96 582f2a6 ee21b96 582f2a6 0509ee0 271a2e6 0c80503 ab591a3 ee21b96 edf5ee3 0509ee0 edc435d f91298a edc435d ee21b96 b926706 582f2a6 b926706 f8816f2 edc435d edeec3c 582f2a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import base64
import json
from io import BytesIO
import pandas as pd
from PIL import Image
import gradio as gr
import requests
def ocr(image):
image = Image.open(image)
img_buffer = BytesIO()
image.save(img_buffer, format=image.format)
byte_data = img_buffer.getvalue()
base64_bytes = base64.b64encode(byte_data) # bytes
base64_str = base64_bytes.decode()
url = "https://www.modelscope.cn/api/v1/studio/damo/ofa_ocr_pipeline/gradio/api/predict/"
payload = json.dumps({
"data": [f"data:image/jpeg;base64,{base64_str}"],
"dataType": ["image"]
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
jobj = json.loads(response.text)
out_img_base64 = jobj['Data']['data'][0].replace('data:image/png;base64,','')
out_img = Image.open(BytesIO(base64.urlsafe_b64decode(out_img_base64)))
ocr_result = jobj['Data']['data'][1]['data']
result = pd.DataFrame(ocr_result, columns=['Box ID', 'Text'])
return out_img, result
title = "Chinese OCR"
description = "Gradio Demo for Chinese OCR based on OFA-Base. "\
"Upload your own image or click any one of the examples, and click " \
"\"Submit\" and then wait for the generated OCR result." \
"\n中文OCR体验区。欢迎上传图片,静待检测文字返回~"
article = "<p style='text-align: center'><a href='https://github.com/OFA-Sys/OFA' target='_blank'>OFA Github " \
"Repo</a></p> "
examples = [['shupai.png'], ['chinese.jpg'], ['gaidao.jpeg'],
['qiaodaima.png'], ['xsd.jpg']]
io = gr.Interface(fn=ocr, inputs=gr.inputs.Image(type='filepath', label='Image'),
examples=examples,
outputs=[gr.outputs.Image(type='pil', label='Image'),
gr.outputs.Dataframe(headers=['Box ID', 'Text'], type='pandas', label='OCR Results')],
title=title, description=description, article=article)
io.launch() |