Spaces:
Runtime error
Runtime error
OFA-OCR-dedao-demo001
/
fairseq
/examples
/simultaneous_translation
/models
/transformer_monotonic_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Dict, List, NamedTuple, Optional | |
import torch | |
import torch.nn as nn | |
from examples.simultaneous_translation.modules.monotonic_transformer_layer import ( | |
TransformerMonotonicDecoderLayer, | |
TransformerMonotonicEncoderLayer, | |
) | |
from fairseq.models import ( | |
register_model, | |
register_model_architecture, | |
) | |
from fairseq.models.transformer import ( | |
TransformerModel, | |
TransformerEncoder, | |
TransformerDecoder, | |
base_architecture, | |
transformer_iwslt_de_en, | |
transformer_vaswani_wmt_en_de_big, | |
tiny_architecture | |
) | |
from torch import Tensor | |
DEFAULT_MAX_SOURCE_POSITIONS = 1024 | |
DEFAULT_MAX_TARGET_POSITIONS = 1024 | |
READ_ACTION = 0 | |
WRITE_ACTION = 1 | |
TransformerMonotonicDecoderOut = NamedTuple( | |
"TransformerMonotonicDecoderOut", | |
[ | |
("action", int), | |
("p_choose", Optional[Tensor]), | |
("attn_list", Optional[List[Optional[Dict[str, Tensor]]]]), | |
("encoder_out", Optional[Dict[str, List[Tensor]]]), | |
("encoder_padding_mask", Optional[Tensor]), | |
], | |
) | |
class TransformerUnidirectionalModel(TransformerModel): | |
def build_encoder(cls, args, src_dict, embed_tokens): | |
return TransformerMonotonicEncoder(args, src_dict, embed_tokens) | |
class TransformerModelSimulTrans(TransformerModel): | |
def build_encoder(cls, args, src_dict, embed_tokens): | |
return TransformerMonotonicEncoder(args, src_dict, embed_tokens) | |
def build_decoder(cls, args, tgt_dict, embed_tokens): | |
return TransformerMonotonicDecoder(args, tgt_dict, embed_tokens) | |
class TransformerMonotonicEncoder(TransformerEncoder): | |
def __init__(self, args, dictionary, embed_tokens): | |
super().__init__(args, dictionary, embed_tokens) | |
self.dictionary = dictionary | |
self.layers = nn.ModuleList([]) | |
self.layers.extend( | |
[ | |
TransformerMonotonicEncoderLayer(args) | |
for i in range(args.encoder_layers) | |
] | |
) | |
class TransformerMonotonicDecoder(TransformerDecoder): | |
""" | |
Transformer decoder consisting of *args.decoder_layers* layers. Each layer | |
is a :class:`TransformerDecoderLayer`. | |
Args: | |
args (argparse.Namespace): parsed command-line arguments | |
dictionary (~fairseq.data.Dictionary): decoding dictionary | |
embed_tokens (torch.nn.Embedding): output embedding | |
no_encoder_attn (bool, optional): whether to attend to encoder outputs | |
(default: False). | |
""" | |
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): | |
super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False) | |
self.dictionary = dictionary | |
self.layers = nn.ModuleList([]) | |
self.layers.extend( | |
[ | |
TransformerMonotonicDecoderLayer(args) | |
for _ in range(args.decoder_layers) | |
] | |
) | |
self.policy_criterion = getattr(args, "policy_criterion", "any") | |
self.num_updates = None | |
def set_num_updates(self, num_updates): | |
self.num_updates = num_updates | |
def pre_attention( | |
self, | |
prev_output_tokens, | |
encoder_out_dict: Dict[str, List[Tensor]], | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
): | |
positions = ( | |
self.embed_positions( | |
prev_output_tokens, | |
incremental_state=incremental_state, | |
) | |
if self.embed_positions is not None | |
else None | |
) | |
if incremental_state is not None: | |
prev_output_tokens = prev_output_tokens[:, -1:] | |
if positions is not None: | |
positions = positions[:, -1:] | |
# embed tokens and positions | |
x = self.embed_scale * self.embed_tokens(prev_output_tokens) | |
if self.project_in_dim is not None: | |
x = self.project_in_dim(x) | |
if positions is not None: | |
x += positions | |
x = self.dropout_module(x) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
encoder_out = encoder_out_dict["encoder_out"][0] | |
if "encoder_padding_mask" in encoder_out_dict: | |
encoder_padding_mask = ( | |
encoder_out_dict["encoder_padding_mask"][0] | |
if encoder_out_dict["encoder_padding_mask"] | |
and len(encoder_out_dict["encoder_padding_mask"]) > 0 | |
else None | |
) | |
else: | |
encoder_padding_mask = None | |
return x, encoder_out, encoder_padding_mask | |
def post_attention(self, x): | |
if self.layer_norm is not None: | |
x = self.layer_norm(x) | |
# T x B x C -> B x T x C | |
x = x.transpose(0, 1) | |
if self.project_out_dim is not None: | |
x = self.project_out_dim(x) | |
return x | |
def clean_cache( | |
self, | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], | |
end_id: Optional[int] = None, | |
): | |
""" | |
Clean cache in the monotonic layers. | |
The cache is generated because of a forward pass of decoder has run but no prediction, | |
so that the self attention key value in decoder is written in the incremental state. | |
end_id is the last idx of the layers | |
""" | |
if end_id is None: | |
end_id = len(self.layers) | |
for index, layer in enumerate(self.layers): | |
if index < end_id: | |
layer.prune_incremental_state(incremental_state) | |
def extract_features( | |
self, | |
prev_output_tokens, | |
encoder_out: Optional[Dict[str, List[Tensor]]], | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
full_context_alignment: bool = False, # unused | |
alignment_layer: Optional[int] = None, # unused | |
alignment_heads: Optional[int] = None, # unsed | |
): | |
""" | |
Similar to *forward* but only return features. | |
Returns: | |
tuple: | |
- the decoder's features of shape `(batch, tgt_len, embed_dim)` | |
- a dictionary with any model-specific outputs | |
""" | |
# incremental_state = None | |
assert encoder_out is not None | |
(x, encoder_outs, encoder_padding_mask) = self.pre_attention( | |
prev_output_tokens, encoder_out, incremental_state | |
) | |
attn = None | |
inner_states = [x] | |
attn_list: List[Optional[Dict[str, Tensor]]] = [] | |
p_choose = torch.tensor([1.0]) | |
for i, layer in enumerate(self.layers): | |
x, attn, _ = layer( | |
x=x, | |
encoder_out=encoder_outs, | |
encoder_padding_mask=encoder_padding_mask, | |
incremental_state=incremental_state, | |
self_attn_mask=self.buffered_future_mask(x) | |
if incremental_state is None | |
else None, | |
) | |
inner_states.append(x) | |
attn_list.append(attn) | |
if incremental_state is not None: | |
if_online = incremental_state["online"]["only"] | |
assert if_online is not None | |
if if_online.to(torch.bool): | |
# Online indicates that the encoder states are still changing | |
assert attn is not None | |
if self.policy_criterion == "any": | |
# Any head decide to read than read | |
head_read = layer.encoder_attn._get_monotonic_buffer(incremental_state)["head_read"] | |
assert head_read is not None | |
if head_read.any(): | |
# We need to prune the last self_attn saved_state | |
# if model decide not to read | |
# otherwise there will be duplicated saved_state | |
self.clean_cache(incremental_state, i + 1) | |
return x, TransformerMonotonicDecoderOut( | |
action=0, | |
p_choose=p_choose, | |
attn_list=None, | |
encoder_out=None, | |
encoder_padding_mask=None, | |
) | |
x = self.post_attention(x) | |
return x, TransformerMonotonicDecoderOut( | |
action=1, | |
p_choose=p_choose, | |
attn_list=attn_list, | |
encoder_out=encoder_out, | |
encoder_padding_mask=encoder_padding_mask, | |
) | |
def base_monotonic_architecture(args): | |
base_architecture(args) | |
args.encoder_unidirectional = getattr(args, "encoder_unidirectional", False) | |
def transformer_monotonic_iwslt_de_en(args): | |
transformer_iwslt_de_en(args) | |
base_monotonic_architecture(args) | |
# parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) | |
def transformer_monotonic_vaswani_wmt_en_de_big(args): | |
transformer_vaswani_wmt_en_de_big(args) | |
def transformer_monotonic_vaswani_wmt_en_fr_big(args): | |
transformer_monotonic_vaswani_wmt_en_fr_big(args) | |
def transformer_unidirectional_iwslt_de_en(args): | |
transformer_iwslt_de_en(args) | |
def monotonic_tiny_architecture(args): | |
tiny_architecture(args) | |
base_monotonic_architecture(args) | |