Spaces:
Runtime error
Runtime error
# Copyright 2022 The OFA-Sys Team. | |
# All rights reserved. | |
# This source code is licensed under the Apache 2.0 license | |
# found in the LICENSE file in the root directory. | |
import string | |
import math | |
import json | |
from itertools import chain | |
import os | |
import torch | |
import torch.distributed as dist | |
from fairseq import utils | |
from data import data_utils | |
from tasks.nlg_tasks.gigaword import fix_tokenization | |
def get_symbols_to_strip_from_output(generator): | |
if hasattr(generator, "symbols_to_strip_from_output"): | |
return generator.symbols_to_strip_from_output | |
else: | |
return {generator.bos, generator.eos} | |
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None): | |
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator)) | |
if bpe is not None: | |
x = bpe.decode(x) | |
if tokenizer is not None: | |
x = tokenizer.decode(x) | |
return x | |
def eval_caption(task, generator, models, sample, **kwargs): | |
transtab = str.maketrans({key: None for key in string.punctuation}) | |
hypos = task.inference_step(generator, models, sample) | |
results = [] | |
for i, sample_id in enumerate(sample["id"].tolist()): | |
detok_hypo_str = decode_fn(hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator) | |
results.append({"image_id": str(sample_id), "caption": detok_hypo_str.translate(transtab).strip()}) | |
return results, None | |
def eval_caption_cn(task, generator, models, sample, **kwargs): | |
hypos = task.inference_step(generator, models, sample) | |
results = [] | |
for i, sample_id in enumerate(sample["id"].tolist()): | |
detok_hypo_str = decode_fn( | |
hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator | |
) | |
results.append( | |
{ | |
"image_id": str(sample_id), | |
"caption": detok_hypo_str.strip(), | |
} | |
) | |
return results, None | |
def eval_ocr(task, generator, models, sample, **kwargs): | |
gen_out = task.inference_step(generator, models, sample) | |
hyps, refs, results = [], [], [] | |
for i, sample_id in enumerate(sample["id"].tolist()): | |
decode_tokens = decode_fn(gen_out[i][0]["tokens"], task.tgt_dict, task.bpe, generator).strip() | |
hyps.append(decode_tokens.strip().replace(" ", "")) | |
if sample["target"]: | |
refs.append( | |
decode_fn( | |
utils.strip_pad(sample["target"][i], task.tgt_dict.pad()), | |
task.tgt_dict, task.bpe, generator | |
) | |
.strip() | |
.replace(" ", "") | |
) | |
results.append( | |
{ | |
"image_id": str(sample_id), | |
"ocr": decode_tokens.strip().replace(" ", ""), | |
} | |
) | |
if refs: | |
acc = [1.0 if hyp == ref else 0.0 for hyp, ref in zip(hyps, refs)] | |
else: | |
acc = None | |
return results, acc | |
def eval_vqa_gen(task, generator, models, sample, **kwargs): | |
if kwargs['beam_search_vqa_eval']: | |
hypos = task.inference_step(generator, models, sample, prefix_tokens=sample['prefix_tokens']) | |
results = [] | |
for i, sample_id in enumerate(sample["id"].tolist()): | |
prefix_len = sample['prefix_tokens'][i].ne(1).sum().item() | |
detok_hypo_str = decode_fn(hypos[i][0]["tokens"][prefix_len:], task.tgt_dict, task.bpe, generator) | |
results.append({"question_id": int(sample_id), "answer": detok_hypo_str.strip()}) | |
scores = [ref_dict.get(result['answer'], 0) for ref_dict, result in zip(sample['ref_dict'], results)] | |
return results, scores | |
encoder_out = models[0].encoder( | |
sample["net_input"]["src_tokens"], | |
src_lengths=sample["net_input"]["src_lengths"], | |
patch_images=sample["net_input"]["patch_images"], | |
patch_masks=sample["net_input"]["patch_masks"] | |
) | |
device = sample["net_input"]["src_tokens"].device | |
eos_item = torch.tensor([task.src_dict.eos()]) | |
pad = task.src_dict.pad() | |
valid_result = [] | |
for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list): | |
valid_size = len(valid_answers) | |
valid_tgt_items = [ | |
torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item]) | |
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers | |
] | |
valid_prev_items = [ | |
torch.cat([torch.tensor(decoder_prompt), valid_answer]) | |
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers | |
] | |
valid_constraint_mask_items = [ | |
torch.cat( | |
[torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask], | |
dim=0 | |
) | |
for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks | |
] | |
valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device) | |
valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device) | |
valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device) | |
new_encoder_out = {} | |
new_encoder_out["encoder_out"] = [ | |
encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1) | |
] | |
new_encoder_out["encoder_padding_mask"] = [ | |
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0) | |
] | |
new_encoder_out["position_embeddings"] = [ | |
encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0) | |
] | |
decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out) | |
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf) | |
lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True) | |
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1) | |
scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0) | |
scores = scores.masked_fill((~valid_constraint_masks).all(2), 0) | |
scores = scores.sum(1) | |
scores = scores.view(-1, valid_size) | |
valid_result.append(scores) | |
valid_result = torch.cat(valid_result, dim=-1) | |
predicts = valid_result.argmax(1).tolist() | |
hyps = [task.index2ans[predict_index] for predict_index in predicts] | |
results = [{"question_id": int(id), "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)] | |
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)] | |
return results, scores | |
def eval_refcoco(task, generator, models, sample, **kwargs): | |
def _calculate_ap_score(hyps, refs, thresh=0.5): | |
interacts = torch.cat( | |
[torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]), | |
torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])], | |
dim=1 | |
) | |
area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) | |
area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1]) | |
interacts_w = interacts[:, 2] - interacts[:, 0] | |
interacts_h = interacts[:, 3] - interacts[:, 1] | |
area_interacts = interacts_w * interacts_h | |
ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6) | |
return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float() | |
gen_out = task.inference_step(generator, models, sample) | |
hyps = [] | |
for i in range(len(gen_out)): | |
hyps.append(gen_out[i][0]["tokens"][:-1] - len(task.src_dict) + task.cfg.num_bins) | |
hyps = torch.stack(hyps, dim=0) | |
hyps = hyps / (task.cfg.num_bins - 1) * task.cfg.max_image_size | |
hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1) | |
hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1) | |
results = [ | |
{"uniq_id": sample_id, | |
"box": [hyps[i][0].item(), hyps[i][1].item(), hyps[i][2].item(), hyps[i][3].item()]} | |
for i, sample_id in enumerate(sample["id"].tolist()) | |
] | |
scores = _calculate_ap_score(hyps, sample['region_coords'].float()) | |
return results, scores | |
def eval_snli_ve(task, generator, models, sample, **kwargs): | |
encoder_out = models[0].encoder( | |
sample["net_input"]["src_tokens"], | |
src_lengths=sample["net_input"]["src_lengths"], | |
patch_images=sample["net_input"]["patch_images"], | |
patch_masks=sample["net_input"]["patch_masks"] | |
) | |
device = sample["net_input"]["src_tokens"].device | |
eos_item = torch.tensor([task.src_dict.eos()]) | |
pad = task.src_dict.pad() | |
valid_result = [] | |
for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list): | |
valid_size = len(valid_answers) | |
valid_tgt_items = [ | |
torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item]) | |
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers | |
] | |
valid_prev_items = [ | |
torch.cat([torch.tensor(decoder_prompt), valid_answer]) | |
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers | |
] | |
valid_constraint_mask_items = [ | |
torch.cat( | |
[torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask], | |
dim=0 | |
) | |
for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks | |
] | |
valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device) | |
valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device) | |
valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device) | |
new_encoder_out = {} | |
new_encoder_out["encoder_out"] = [ | |
encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1) | |
] | |
new_encoder_out["encoder_padding_mask"] = [ | |
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0) | |
] | |
new_encoder_out["position_embeddings"] = [ | |
encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0) | |
] | |
decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out) | |
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf) | |
lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True) | |
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1) | |
scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0) | |
scores = scores.masked_fill((~valid_constraint_masks).all(2), 0) | |
scores = scores.sum(1) | |
scores = scores.view(-1, valid_size) | |
valid_result.append(scores) | |
valid_result = torch.cat(valid_result, dim=-1) | |
predicts = valid_result.argmax(1).tolist() | |
hyps = [task.index2ans[predict_index] for predict_index in predicts] | |
results = [{"uniq_id": id, "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)] | |
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)] | |
return results, scores | |
def eval_image_gen(task, generator, models, sample, **kwargs): | |
hypos, _ = task.inference_image(generator, sample, models) | |
tokens = sample['net_input']['src_tokens'][0].view(-1).tolist() | |
caption = task.bpe.decode(task.tgt_dict.string([token for token in tokens if token >= 4]))[ | |
38:].replace('/', '') | |
text_similarity_score, indices = task.compute_text_similarity(hypos, caption, | |
sample['net_input']['src_tokens'].device) | |
results = [] | |
for i, indice in enumerate(indices): | |
results.append({"sample_id": str(sample["id"][0]), "score": text_similarity_score[i], "image": hypos[indice]}) | |
scores = [max(text_similarity_score).item()] | |
sorted_hyps = [hypos[indice] for indice in indices] | |
# dump results | |
if task.cfg.gen_images_path: | |
caption_tokens = sample['net_input']['src_tokens'][0].view(-1).tolist() | |
caption = task.bpe.decode(task.tgt_dict.string([token for token in caption_tokens if token >= 4]))[ | |
38:].replace('/', '') | |
task.dump_images(sorted_hyps, text=caption, path=os.path.join(task.cfg.gen_images_path, 'all_results')) | |
task.dump_images(sorted_hyps, text=caption, path=os.path.join(task.cfg.gen_images_path, 'top1'), topk=1) | |
return results, scores | |
def eval_glue(task, generator, models, sample, **kwargs): | |
net_output = models[0](**sample["net_input"]) | |
net_output[0].masked_fill_(~sample["constraint_masks"], -math.inf) | |
last_token_ids = sample["net_input"]["prev_output_tokens"].ne(task.src_dict.pad()).sum(1, keepdim=True) - 1 | |
logits = net_output[0].gather(1, last_token_ids.unsqueeze(2).expand(-1, -1, net_output[0].size(2))) | |
logits = logits.squeeze(1) | |
predicts = logits.argmax(1).tolist() | |
hyps = [task.bpe.decode(task.src_dict[predict]).strip() for predict in predicts] | |
results = [{"hyp": hyp, "ref": ref_dict.keys()[0]} for hyp, ref_dict in zip(hyps, sample['ref_dict'])] | |
return results, None | |
def eval_gigaword(task, generator, models, sample, **kwargs): | |
gen_out = task.inference_step(generator, models, sample) | |
hyps, refs = [], [] | |
results = [] | |
for i in range(len(gen_out)): | |
hyp = decode_fn(gen_out[i][0]["tokens"], task.tgt_dict, task.bpe, generator).lower().strip() | |
hyp = fix_tokenization(hyp).replace('1', '#') | |
ref = sample['target_strs'][i] | |
hyps.append(hyp) | |
refs.append(ref) | |
results.append({"hyp": hyp, "ref": ref}) | |
return results, None | |
def eval_image_classify(task, generator, models, sample, **kwargs): | |
batch_size = sample["net_input"]["src_tokens"].size(0) | |
encoder_out = models[0].encoder( | |
sample["net_input"]["src_tokens"], | |
src_lengths=sample["net_input"]["src_lengths"], | |
patch_images=sample["net_input"]["patch_images"], | |
patch_masks=sample["net_input"]["patch_masks"] | |
) | |
device = sample["net_input"]["src_tokens"].device | |
valid_result = [] | |
for valid_tgt, valid_prev_output, valid_constraint_masks in zip(task.valid_tgt_list, | |
task.valid_prev_output_list, | |
task.valid_constraint_masks_list): | |
valid_tgt_size = valid_tgt.size(0) | |
valid_tgt = valid_tgt.repeat(batch_size, 1).to(device) | |
valid_prev_output = valid_prev_output.repeat(batch_size, 1).to(device) | |
valid_constraint_masks = valid_constraint_masks.repeat(batch_size, 1, 1).to(device) | |
new_encoder_out = {} | |
new_encoder_out["encoder_out"] = [ | |
encoder_out["encoder_out"][0].repeat_interleave(valid_tgt_size, dim=1) | |
] | |
new_encoder_out["encoder_padding_mask"] = [ | |
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_tgt_size, dim=0) | |
] | |
new_encoder_out["position_embeddings"] = [ | |
encoder_out["position_embeddings"][0].repeat_interleave(valid_tgt_size, dim=0) | |
] | |
decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out) | |
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf) | |
lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True) | |
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1) | |
scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0) | |
scores = scores.sum(1) | |
scores = scores.view(-1, valid_tgt_size) | |
valid_result.append(scores) | |
valid_result = torch.cat(valid_result, dim=-1) | |
predicts = valid_result.argmax(1).tolist() | |
hyps = [task.index2ans[predict_index] for predict_index in predicts] | |
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)] | |
results = [{"uniq_id": id, "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)] | |
return results, scores | |
def eval_step(task, generator, models, sample, **kwargs): | |
if task.cfg._name == 'caption': | |
return eval_caption(task, generator, models, sample, **kwargs) | |
elif task.cfg._name == "caption_cn": | |
return eval_caption_cn(task, generator, models, sample, **kwargs) | |
elif task.cfg._name == "ocr": | |
return eval_ocr(task, generator, models, sample, **kwargs) | |
elif task.cfg._name == 'vqa_gen': | |
return eval_vqa_gen(task, generator, models, sample, **kwargs) | |
elif task.cfg._name == 'refcoco': | |
return eval_refcoco(task, generator, models, sample, **kwargs) | |
elif task.cfg._name == 'snli_ve': | |
return eval_snli_ve(task, generator, models, sample, **kwargs) | |
elif task.cfg._name == 'image_gen': | |
return eval_image_gen(task, generator, models, sample, **kwargs) | |
elif task.cfg._name in {'cola', 'mnli', 'mrpc', 'qnli', 'qqp', 'rte', 'sst2'}: | |
return eval_glue(task, generator, models, sample, **kwargs) | |
elif task.cfg._name == 'gigaword': | |
return eval_gigaword(task, generator, models, sample, **kwargs) | |
elif task.cfg._name == 'image_classify': | |
return eval_image_classify(task, generator, models, sample, **kwargs) | |
else: | |
raise NotImplementedError | |
def merge_results(task, cfg, logger, score_cnt, score_sum, results): | |
if task.cfg._name == 'image_gen': | |
if cfg.distributed_training.distributed_world_size > 1: | |
dist.all_reduce(score_sum.data) | |
dist.all_reduce(score_cnt.data) | |
if score_cnt.item() > 0: | |
logger.info("score_sum: {}, score_cnt: {}, score: {}".format( | |
score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4) | |
)) | |
else: | |
gather_results = None | |
if cfg.distributed_training.distributed_world_size > 1: | |
gather_results = [None for _ in range(dist.get_world_size())] | |
dist.all_gather_object(gather_results, results) | |
dist.all_reduce(score_sum.data) | |
dist.all_reduce(score_cnt.data) | |
if score_cnt.item() > 0: | |
logger.info("score_sum: {}, score_cnt: {}, score: {}".format( | |
score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4) | |
)) | |
if cfg.distributed_training.distributed_world_size == 1 or dist.get_rank() == 0: | |
os.makedirs(cfg.common_eval.results_path, exist_ok=True) | |
output_path = os.path.join(cfg.common_eval.results_path, "{}_predict.json".format(cfg.dataset.gen_subset)) | |
gather_results = list(chain(*gather_results)) if gather_results is not None else results | |
with open(output_path, 'w') as fw: | |
json.dump(gather_results, fw) | |