JustinLin610's picture
first commit
ee21b96
raw
history blame
27.3 kB
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
from io import BytesIO
import math
import logging
import random
import warnings
import numpy as np
import torch
import base64
from torchvision import transforms
from PIL import Image, ImageFile
from data import data_utils
from data.ofa_dataset import OFADataset
from utils.vision_helper import RandomAugment
import utils.transforms as T
ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
def get_whole_word_mask(bpe, dictionary):
if bpe is not None:
def is_beginning_of_word(i):
if i < dictionary.nspecial:
# special elements are always considered beginnings
return True
tok = dictionary[i]
if tok.startswith("madeupword"):
return True
try:
return bpe.is_beginning_of_word(tok)
except ValueError:
return True
mask_whole_words = torch.ByteTensor(
list(map(is_beginning_of_word, range(len(dictionary))))
)
return mask_whole_words
return None
def collate(samples, pad_idx, eos_idx):
if len(samples) == 0:
return {}
def merge(key):
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx=eos_idx,
)
id = np.array([s["id"] for s in samples])
src_tokens = merge("source")
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
code_masks = None
if samples[0].get("code_mask", None) is not None:
code_masks = torch.cat([sample['code_mask'] for sample in samples])
conf = torch.cat([s['conf'] for s in samples], dim=0)
prev_output_tokens = None
target = None
if samples[0].get("target", None) is not None:
target = merge("target")
tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
ntokens = tgt_lengths.sum().item()
if samples[0].get("prev_output_tokens", None) is not None:
prev_output_tokens = merge("prev_output_tokens")
else:
ntokens = src_lengths.sum().item()
batch = {
"id": id,
"nsentences": len(samples),
"ntokens": ntokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"patch_images": patch_images,
"patch_masks": patch_masks,
"code_masks": code_masks,
"prev_output_tokens": prev_output_tokens
},
"target": target,
"conf": conf
}
return batch
class UnifyDataset(OFADataset):
def __init__(
self,
split,
dataset,
bpe,
src_dict,
tgt_dict=None,
max_src_length=128,
max_tgt_length=30,
seed=7,
code_dict_size=8192,
num_bins=1000,
patch_image_size=384,
code_image_size=128,
pure_text_dataset=None,
pure_image_dataset=None,
detection_dataset=None,
all_object_list=None,
all_caption_list=None,
type2ans_dict=None,
ans2type_dict=None,
max_image_size=512,
mask_ratio=0.3,
random_ratio=0.0,
keep_ratio=0.0,
mask_length="span-poisson",
poisson_lambda=3.0,
replace_length=1
):
super().__init__(split, dataset, bpe, src_dict, tgt_dict)
self.max_src_length = max_src_length
self.max_tgt_length = max_tgt_length
self.seed = seed
self.code_dict_size = code_dict_size
self.num_bins = num_bins
self.patch_image_size = patch_image_size
self.code_image_size = code_image_size
self.pure_text_dataset = pure_text_dataset
self.pure_image_dataset = pure_image_dataset
self.detection_dataset = detection_dataset
self.epoch = 0
self.all_object_list = all_object_list
self.all_caption_list = all_caption_list
self.type2ans_dict = type2ans_dict
self.ans2type_dict = ans2type_dict
self.mask_ratio = mask_ratio
self.random_ratio = random_ratio
self.keep_ratio = keep_ratio
self.mask_length = mask_length
self.poisson_lambda = poisson_lambda
self.replace_length = replace_length
if self.replace_length not in [-1, 0, 1]:
raise ValueError(f"invalid arg: replace_length={self.replace_length}")
if self.mask_length not in ["subword", "word", "span-poisson"]:
raise ValueError(f"invalid arg: mask-length={self.mask_length}")
if self.mask_length == "subword" and self.replace_length not in [0, 1]:
raise ValueError(f"if using subwords, use replace-length=1 or 0")
self.mask_idx = src_dict.index("<mask>")
self.mask_whole_word = (
get_whole_word_mask(self.bpe, self.src_dict)
if self.mask_length != "subword"
else None
)
self.mask_span_distribution = None
if self.mask_length == "span-poisson":
_lambda = self.poisson_lambda
lambda_to_the_k = 1
e_to_the_minus_lambda = math.exp(-_lambda)
k_factorial = 1
ps = []
for k in range(0, 128):
ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
lambda_to_the_k *= _lambda
k_factorial *= k + 1
if ps[-1] < 0.0000001:
break
ps = torch.FloatTensor(ps)
self.mask_span_distribution = torch.distributions.Categorical(ps)
self.pos_tgt_item = self.encode_text(" yes")
self.neg_tgt_item = self.encode_text(" no")
self.mask_left = self.mask_top = int(0.5 * self.code_image_size)
self.mask_right = self.mask_bottom = int(1.5 * self.code_image_size)
self.mask_ids = [
i*self.code_image_size*2+j
for i in range(self.code_image_size*2) for j in range(self.code_image_size*2)
if not (self.mask_left <= i < self.mask_right and self.mask_top <= j < self.mask_bottom)
]
scales = np.arange(patch_image_size, 481).tolist()
# for image-text pair
self.patch_resize_transform = transforms.Compose([
T.RandomResize(scales, max_size=672),
transforms.CenterCrop(patch_image_size),
RandomAugment(2, 7, isPIL=True, augs=['Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness',
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
# for pure image
self.patch_crop_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
# for detection
self.detection_transform = T.Compose([
T.RandomHorizontalFlip(),
T.LargeScaleJitter(output_size=self.code_image_size*2, aug_scale_min=1.0, aug_scale_max=1.5),
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_image_size=max_image_size)
])
# for visual grounding
self.visual_grounding_transform = T.Compose([
T.RandomResize(scales, max_size=672),
T.ObjectCenterCrop((patch_image_size, patch_image_size)),
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_image_size=max_image_size)
])
def set_epoch(self, epoch, **unused):
self.epoch = epoch
def get_negative_caption(self, caption, gt_objects):
prob = random.random()
if gt_objects is not None and gt_objects != '' and prob > 0.6:
gt_object = random.choice(gt_objects.strip().split('&&'))
negative_object = random.choice(self.all_object_list[:-1])
negative_object = self.all_object_list[-1] if negative_object == gt_object else negative_object
negative_caption = caption.replace(gt_object, negative_object)
else:
negative_caption = random.choice(self.all_caption_list)
return negative_caption
def get_negative_answer(self, answer, conf):
prob = random.random()
if conf > (prob + 0.1) and answer in self.ans2type_dict:
negative_answer_type = self.ans2type_dict[answer]
if negative_answer_type == 'how many' and answer.isdigit() and prob > 0.5:
negative_answer = int(answer) + random.choice([-1, 1]) if answer != 0 else 1
else:
negative_answer_list = self.type2ans_dict[negative_answer_type]
negative_answer = random.choice(negative_answer_list[:-1])
negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer
return negative_answer
negative_answer_list = self.type2ans_dict['other']
negative_answer = random.choice(negative_answer_list[:-1])
negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer
return negative_answer
def process_image_text_pair(self, index):
uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = self.dataset[index]
image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
patch_image = self.patch_resize_transform(image) if type != 'visual_grounding' else None
patch_mask = torch.tensor([True])
conf = torch.tensor([1.0])
if type == 'caption':
tgt_caption = self.pre_caption(caption, self.max_tgt_length)
pos_src_caption = self.pre_caption(caption, self.max_src_length)
neg_src_caption = self.pre_caption(self.get_negative_caption(caption, gt_objects), self.max_src_length)
src_item = self.encode_text(" what does the image describe?")
tgt_item = self.encode_text(" {}".format(tgt_caption))
pos_src_item = self.encode_text(' does the image describe " {} "?'.format(pos_src_caption))
neg_src_item = self.encode_text(' does the image describe " {} "?'.format(neg_src_caption))
elif type == 'qa':
question = self.pre_question(question, self.max_src_length)
ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in refs.split('&&')}
answer = max(ref_dict, key=ref_dict.get)
conf = ref_dict[answer]
src_item = self.encode_text(" {}".format(question))
tgt_item = self.encode_text(" {}".format(answer))
conf = torch.tensor([conf])
pos_src_item = self.encode_text(' what is the answer to question " {} ". is " {} "?'.format(question, answer))
neg_src_item = self.encode_text(
' what is the answer to question " {} ". is " {} "?'.format(question, self.get_negative_answer(answer, conf))
)
elif type == 'visual_grounding':
conf = torch.tensor([1.0])
w, h = image.size
boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])}
x0, y0, x1, y1 = refs.strip().split(',')
boxes_target["boxes"] = torch.tensor([[float(x0), float(y0), float(x1), float(y1)]])
boxes_target["labels"] = np.array([0])
boxes_target["area"] = torch.tensor([(float(x1) - float(x0)) * (float(y1) - float(y0))])
patch_image, boxes_target = self.visual_grounding_transform(image, boxes_target)
quant_x0 = "<bin_{}>".format(int((boxes_target["boxes"][0][0] * (self.num_bins - 1)).round()))
quant_y0 = "<bin_{}>".format(int((boxes_target["boxes"][0][1] * (self.num_bins - 1)).round()))
quant_x1 = "<bin_{}>".format(int((boxes_target["boxes"][0][2] * (self.num_bins - 1)).round()))
quant_y1 = "<bin_{}>".format(int((boxes_target["boxes"][0][3] * (self.num_bins - 1)).round()))
region_coord = "{} {} {} {}".format(quant_x0, quant_y0, quant_x1, quant_y1)
src_caption = self.pre_caption(caption, self.max_src_length)
src_item = self.encode_text(' which region does the text " {} " describe?'.format(src_caption))
tgt_item = self.encode_text(region_coord, use_bpe=False)
else:
logger.info('type {} is not implemented'.format(type))
raise NotImplementedError
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, tgt_item])
pos_src_item = torch.cat([self.bos_item, pos_src_item, self.eos_item]) if type != 'visual_grounding' else None
neg_src_item = torch.cat([self.bos_item, neg_src_item, self.eos_item]) if type != 'visual_grounding' else None
if type == 'caption' and dataset_name == 'cc12m':
target_item[:2] = self.src_dict.pad()
target_item[-1] = self.eos_item
example = {
"id": uniq_id,
"source": src_item,
"patch_image": patch_image,
"patch_mask": patch_mask,
"target": target_item,
"prev_output_tokens": prev_output_item,
"conf": conf,
}
examples = [example]
prob = random.random()
if type == 'visual_grounding':
region_example = example.copy()
region_prefix_item = self.encode_text(' what does the region describe? region:')
region_coord_item = self.encode_text('{}'.format(region_coord), use_bpe=False)
region_src_item = torch.cat([region_prefix_item, region_coord_item])
region_tgt_item = self.encode_text(' {}'.format(self.pre_caption(caption, self.max_tgt_length)))
region_example["source"] = torch.cat([self.bos_item, region_src_item, self.eos_item])
region_example["target"] = torch.cat([region_tgt_item, self.eos_item])
region_example["prev_output_tokens"] = torch.cat([self.bos_item, region_tgt_item])
region_example["conf"] = torch.tensor([1.0])
examples.append(region_example)
elif prob >= 0.5 and self.split == 'train':
pos_example = example.copy()
pos_example["source"] = pos_src_item
pos_example["target"] = torch.cat([self.pos_tgt_item, self.eos_item])
pos_example["prev_output_tokens"] = torch.cat([self.bos_item, self.pos_tgt_item])
examples.append(pos_example)
elif self.split == 'train':
neg_example = example.copy()
neg_example["source"] = neg_src_item
neg_example["target"] = torch.cat([self.neg_tgt_item, self.eos_item])
neg_example["prev_output_tokens"] = torch.cat([self.bos_item, self.neg_tgt_item])
examples.append(neg_example)
return examples
def process_pure_text(self, index):
patch_image = torch.zeros((3, self.code_image_size*2, self.code_image_size*2))
patch_mask = torch.tensor([False])
code_mask = torch.tensor([False])
conf = torch.tensor([2.0])
examples = []
for _ in range(2):
uniq_id, text = self.pure_text_dataset[index]
text = text.strip().lower()
text_item = self.encode_text(" {}".format(text), length=512)
text_item = text_item[-256:]
text_item = torch.cat([self.bos_item, text_item, self.eos_item])
mask_text_item = self.add_whole_word_mask(text_item.clone(), self.mask_ratio)
prefix_item = self.encode_text(' what is the complete text of " "?')
src_item = torch.cat([prefix_item[:-2], mask_text_item[1:-1], prefix_item[-2:]])
tgt_item = text_item[1:-1]
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, tgt_item])
example = {
"id": uniq_id,
"source": src_item,
"patch_image": patch_image,
"patch_mask": patch_mask,
"code_mask": code_mask,
"target": target_item,
"prev_output_tokens": prev_output_item,
"conf": conf,
}
examples.append(example)
return examples
def process_pure_image(self, index):
image_id, image, code = self.pure_image_dataset[index]
image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
patch_image = self.patch_crop_transform(image)
patch_image[:, self.mask_top:self.mask_bottom, self.mask_left:self.mask_right] = 0
patch_mask = torch.tensor([True])
src_item = self.encode_text(" what is the image in the middle part?")
image_code = torch.LongTensor([int(num) for num in code.strip().split()])
tgt_item = image_code + len(self.src_dict) - self.code_dict_size - self.num_bins
code_mask = torch.tensor([True])
conf = torch.tensor([2.0])
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, tgt_item])
example = {
"id": image_id,
"source": src_item,
"patch_image": patch_image,
"patch_mask": patch_mask,
"code_mask": code_mask,
"target": target_item,
"prev_output_tokens": prev_output_item,
"conf": conf,
}
return [example]
def process_detection(self, index):
image_id, image, label = self.detection_dataset[index]
image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
w, h = image.size
boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])}
label_list = label.strip().split('&&')
for label in label_list:
x0, y0, x1, y1, cat_id, cat = label.strip().split(',', 5)
boxes_target["boxes"].append([float(x0), float(y0), float(x1), float(y1)])
boxes_target["labels"].append(cat)
boxes_target["area"].append((float(x1) - float(x0)) * (float(y1) - float(y0)))
boxes_target["boxes"] = torch.tensor(boxes_target["boxes"])
boxes_target["labels"] = np.array(boxes_target["labels"])
boxes_target["area"] = torch.tensor(boxes_target["area"])
patch_image, boxes_target = self.detection_transform(image, boxes_target)
patch_mask = torch.tensor([True])
code_mask = torch.tensor([False])
conf = torch.tensor([2.0])
quant_boxes = []
for i, box in enumerate(boxes_target["boxes"]):
quant_boxes.extend(["<bin_{}>".format(int((pos * (self.num_bins - 1)).round())) for pos in box[:4]])
quant_boxes.append(self.bpe.encode(' {}'.format(boxes_target["labels"][i])))
src_item = self.encode_text(' what are the objects in the image?')
tgt_item = self.encode_text(' '.join(quant_boxes), use_bpe=False)
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, tgt_item])
example = {
"id": image_id,
"source": src_item,
"patch_image": patch_image,
"patch_mask": patch_mask,
"code_mask": code_mask,
"target": target_item,
"prev_output_tokens": prev_output_item,
"conf": conf,
}
return [example]
def __getitem__(self, index):
with data_utils.numpy_seed(self.seed, self.epoch):
pair_samples = self.process_image_text_pair(index)
extra_samples = []
if self.split == 'train' and self.dataset.data_cnt % 8 == 0:
extra_samples += self.process_pure_text(0) if self.pure_text_dataset else []
extra_samples += self.process_pure_image(0) if self.pure_image_dataset else []
extra_samples += self.process_detection(0) if self.detection_dataset else []
return pair_samples, extra_samples
def word_starts(self, source):
if self.mask_whole_word is not None:
is_word_start = self.mask_whole_word.gather(0, source)
else:
is_word_start = torch.ones(source.size())
is_word_start[0] = 0
is_word_start[-1] = 0
return is_word_start
def add_whole_word_mask(self, source, p):
is_word_start = self.word_starts(source)
num_to_mask = int(math.ceil(is_word_start.float().sum() * p))
num_inserts = 0
if num_to_mask == 0:
return source
if self.mask_span_distribution is not None:
lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,))
# Make sure we have enough to mask
cum_length = torch.cumsum(lengths, 0)
while cum_length[-1] < num_to_mask:
lengths = torch.cat(
[
lengths,
self.mask_span_distribution.sample(sample_shape=(num_to_mask,)),
],
dim=0,
)
cum_length = torch.cumsum(lengths, 0)
# Trim to masking budget
i = 0
while cum_length[i] < num_to_mask:
i += 1
lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1])
num_to_mask = i + 1
lengths = lengths[:num_to_mask]
# Handle 0-length mask (inserts) separately
lengths = lengths[lengths > 0]
num_inserts = num_to_mask - lengths.size(0)
num_to_mask -= num_inserts
if num_to_mask == 0:
return self.add_insertion_noise(source, num_inserts / source.size(0))
assert (lengths > 0).all()
else:
lengths = torch.ones((num_to_mask,)).long()
assert is_word_start[-1] == 0
word_starts = is_word_start.nonzero(as_tuple=False)
indices = word_starts[
torch.randperm(word_starts.size(0))[:num_to_mask]
].squeeze(1)
mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio
source_length = source.size(0)
assert source_length - 1 not in indices
to_keep = torch.ones(source_length, dtype=torch.bool)
is_word_start[
-1
] = 255 # acts as a long length, so spans don't go over the end of doc
if self.replace_length == 0:
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
)
if self.mask_span_distribution is not None:
assert len(lengths.size()) == 1
assert lengths.size() == indices.size()
lengths -= 1
while indices.size(0) > 0:
assert lengths.size() == indices.size()
lengths -= is_word_start[indices + 1].long()
uncompleted = lengths >= 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
lengths = lengths[uncompleted]
if self.replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
)
else:
# A bit faster when all lengths are 1
while indices.size(0) > 0:
uncompleted = is_word_start[indices + 1] == 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
if self.replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
)
assert source_length - 1 not in indices
source = source[to_keep]
if num_inserts > 0:
source = self.add_insertion_noise(source, num_inserts / source.size(0))
return source
def add_insertion_noise(self, tokens, p):
if p == 0.0:
return tokens
num_tokens = len(tokens)
n = int(math.ceil(num_tokens * p))
noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1
noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool)
noise_mask[noise_indices] = 1
result = torch.LongTensor(n + len(tokens)).fill_(-1)
num_random = int(math.ceil(n * self.random_ratio))
result[noise_indices[num_random:]] = self.mask_idx
result[noise_indices[:num_random]] = torch.randint(
low=4, high=len(self.tgt_dict)-self.code_dict_size-self.num_bins, size=(num_random,)
)
result[~noise_mask] = tokens
assert (result >= 0).all()
return result
def collater(self, samples, pad_to_length=None):
"""Merge samples of different tasks to form two mini-batches.
Args:
samples (List[Tuple]): samples to collate
Returns:
Tuple[dict]: two mini-batch containing the data of different tasks
"""
samples_v1 = [] # containing image-text pairs
samples_v2 = [] # containing detection data, text data and image data
for sample_tuple in samples:
samples_v1 += sample_tuple[0]
samples_v2 += sample_tuple[1]
if samples_v2 != []:
res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
res_v2 = collate(samples_v2, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
return res_v1, res_v2
else:
res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
return res_v1