JustinLin610's picture
add easyocr
85d9fef
raw
history blame
10.8 kB
from __future__ import annotations
import itertools
import logging
import math
import operator
from collections import namedtuple
from functools import cached_property
from typing import Iterable, Optional, Tuple
import cv2
import numpy as np
from easyocrlite.types import BoxTuple, RegionTuple
from easyocrlite.utils.utils import grouped_by
logger = logging.getLogger(__name__)
class Region(namedtuple("Region", ["x_min", "x_max", "y_min", "y_max"])):
@cached_property
def ycenter(self):
return 0.5 * (self.y_min + self.y_max)
@cached_property
def xcenter(self):
return 0.5 * (self.x_min + self.x_max)
@cached_property
def height(self):
return self.y_max - self.y_min
@cached_property
def width(self):
return self.x_max - self.x_min
@classmethod
def from_box(cls, box: BoxTuple) -> Region:
(xtl, ytl), (xtr, ytr), (xbr, ybr), (xbl, ybl) = box
x_max = max(xtl, xtr, xbr, xbl)
x_min = min(xtl, xtr, xbr, xbl)
y_max = max(ytl, ytr, ybr, ybl)
y_min = min(ytl, ytr, ybr, ybl)
return cls(x_min, x_max, y_min, y_max)
def as_tuple(self) -> RegionTuple:
return self.x_min, self.x_max, self.y_min, self.y_max
def expand(
self, add_margin: float, size: Optional[Tuple[int, int] | int] = None
) -> Region:
margin = int(add_margin * min(self.width, self.height))
if isinstance(size, Iterable):
max_x, max_y = size
elif size is None:
max_x = self.width * 2
max_y = self.height * 2
else:
max_x = max_y = size
return Region(
max(0, self.x_min - margin),
min(max_x, self.x_max + margin),
max(0, self.y_min - margin),
min(max_y, self.y_max + margin),
)
def __add__(self, region: Region) -> Region:
return Region(
min(self.x_min, region.x_min),
max(self.x_max, region.x_max),
min(self.y_min, region.y_min),
max(self.y_max, region.y_max),
)
def extract_boxes(
textmap: np.ndarray,
linkmap: np.ndarray,
text_threshold: float,
link_threshold: float,
low_text: float,
) -> Tuple[list[BoxTuple], list[int]]:
# prepare data
linkmap = linkmap.copy()
textmap = textmap.copy()
img_h, img_w = textmap.shape
""" labeling method """
ret, text_score = cv2.threshold(textmap, low_text, 1, 0)
ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0)
text_score_comb = np.clip(text_score + link_score, 0, 1)
nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(
text_score_comb.astype(np.uint8), connectivity=4
)
boxes = []
mapper = []
for k in range(1, nLabels):
# size filtering
size = stats[k, cv2.CC_STAT_AREA]
if size < 10:
continue
# thresholding
if np.max(textmap[labels == k]) < text_threshold:
continue
# make segmentation map
segmap = np.zeros(textmap.shape, dtype=np.uint8)
segmap[labels == k] = 255
mapper.append(k)
segmap[np.logical_and(link_score == 1, text_score == 0)] = 0 # remove link area
x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2)
sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1
# boundary check
if sx < 0:
sx = 0
if sy < 0:
sy = 0
if ex >= img_w:
ex = img_w
if ey >= img_h:
ey = img_h
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1 + niter, 1 + niter))
segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel)
# make box
np_contours = (
np.roll(np.array(np.where(segmap != 0)), 1, axis=0)
.transpose()
.reshape(-1, 2)
)
rectangle = cv2.minAreaRect(np_contours)
box = cv2.boxPoints(rectangle)
# align diamond-shape
w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
box_ratio = max(w, h) / (min(w, h) + 1e-5)
if abs(1 - box_ratio) <= 0.1:
l, r = min(np_contours[:, 0]), max(np_contours[:, 0])
t, b = min(np_contours[:, 1]), max(np_contours[:, 1])
box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)
# make clock-wise order
startidx = box.sum(axis=1).argmin()
box = np.roll(box, 4 - startidx, 0)
box = np.array(box)
boxes.append(box)
return boxes, mapper
def extract_regions_from_boxes(
boxes: list[BoxTuple], slope_ths: float
) -> Tuple[list[Region], list[BoxTuple]]:
region_list: list[Region] = []
box_list = []
for box in boxes:
box = np.array(box).astype(np.int32)
(xtl, ytl), (xtr, ytr), (xbr, ybr), (xbl, ybl) = box
# get the tan of top and bottom edge
# why 10?
slope_top = (ytr - ytl) / max(10, xtr - xtl)
slope_bottom = (ybr - ybl) / max(10, xbr - xbl)
if max(abs(slope_top), abs(slope_bottom)) < slope_ths:
# not very tilted, rectangle box
region_list.append(Region.from_box(box))
else:
# tilted
box_list.append(box)
return region_list, box_list
def box_expand(
box: BoxTuple, add_margin: float, size: Optional[Tuple[int, int] | int] = None
) -> BoxTuple:
(xtl, ytl), (xtr, ytr), (xbr, ybr), (xbl, ybl) = box
height = np.linalg.norm([xbl - xtl, ybl - ytl]) # from top left to bottom left
width = np.linalg.norm([xtr - xtl, ytr - ytl]) # from top left to top right
# margin is added based on the diagonal
margin = int(1.44 * add_margin * min(width, height))
theta13 = abs(np.arctan((ytl - ybr) / max(10, (xtl - xbr))))
theta24 = abs(np.arctan((ytr - ybl) / max(10, (xtr - xbl))))
if isinstance(size, Iterable):
max_x, max_y = size
elif size is None:
max_x = width * 2
max_y = height * 2
else:
max_x = max_y = size
new_box = (
(
max(0, int(xtl - np.cos(theta13) * margin)),
max(0, int(ytl - np.sin(theta13) * margin)),
),
(
min(max_x, math.ceil(xtr + np.cos(theta24) * margin)),
max(0, int(ytr - np.sin(theta24) * margin)),
),
(
min(max_x, math.ceil(xbr + np.cos(theta13) * margin)),
min(max_y, math.ceil(ybr + np.sin(theta13) * margin)),
),
(
max(0, int(xbl - np.cos(theta24) * margin)),
min(max_y, math.ceil(ybl + np.sin(theta24) * margin)),
),
)
return new_box
def greedy_merge(
regions: list[Region],
ratio_ths: float = 0.5,
center_ths: float = 0.5,
dim_ths: float = 0.5,
space_ths: float = 1.0,
verbose: int = 4,
) -> list[Region]:
regions = sorted(regions, key=operator.attrgetter("ycenter"))
# grouped by ycenter
groups = grouped_by(
regions,
operator.attrgetter("ycenter"),
center_ths,
operator.attrgetter("height"),
)
for group in groups:
group.sort(key=operator.attrgetter("x_min"))
idx = 0
while idx < len(group) - 1:
region1, region2 = group[idx], group[idx + 1]
# both are horizontal regions
cond = (region1.width / region1.height) > ratio_ths and (
region2.width / region2.height
) > ratio_ths
# similar heights
cond = cond and abs(region1.height - region2.height) < dim_ths * np.mean(
[region1.height, region2.height]
)
# similar ycenters
# cond = cond and abs(region1.ycenter - region2.ycenter) < center_ths * np.mean(
# [region1.height, region2.height]
# )
# horizontal space is small
cond = cond and (region2.x_min - region1.x_max) < space_ths * np.mean(
[region1.height, region2.height]
)
if cond:
# merge regiona
region = region1 + region2
if verbose > 2:
logger.debug(f"horizontal merging {region1} {region2}")
group.pop(idx)
group.pop(idx)
group.insert(idx, region)
else:
if verbose > 0:
logger.debug(f"not horizontal merging {region1} {region2}")
idx += 1
# flatten groups
regions = list(itertools.chain.from_iterable(groups))
# grouped by xcenter
groups = grouped_by(
regions,
operator.attrgetter("xcenter"),
center_ths,
operator.attrgetter("width"),
)
for group in groups:
group.sort(key=operator.attrgetter("y_min"))
idx = 0
while idx < len(group) - 1:
region1, region2 = group[idx], group[idx + 1]
# both are vertical regions
cond = (region1.height / region1.width) > ratio_ths and (
region2.height / region2.width
) > ratio_ths
# similar widths
cond = cond and abs(region1.width - region2.width) < dim_ths * np.mean(
[region1.width, region2.width]
)
# # similar xcenters
# cond = cond and abs(region1.xcenter - region2.xcenter) < center_ths * np.mean(
# [region1.width, region2.width]
# )
# vertical space is small
cond = cond and (region2.y_min - region1.y_max) < space_ths * np.mean(
[region1.width, region2.width]
)
if cond:
# merge region
region = region1 + region2
if verbose > 2:
logger.debug(f"vertical merging {region1} {region2}")
group.pop(idx)
group.pop(idx)
group.insert(idx, region)
else:
if verbose > 1:
logger.debug(f"not vertical merging {region1} {region2}")
idx += 1
# flatten groups
regions = list(itertools.chain.from_iterable(groups))
return regions