JustinLin610's picture
first commit
ee21b96
raw
history blame
8.14 kB
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import glob
from subprocess import check_call
try:
import faiss
has_faiss = True
except ImportError:
has_faiss = False
import numpy as np
GB = 1024 * 1024 * 1024
def call(cmd):
print(cmd)
check_call(cmd, shell=True)
def get_batches(directory, lang, prefix="all_avg_pool"):
print(f"Finding in {directory}/{prefix}.{lang}*")
files = glob.glob(f"{directory}/{prefix}.{lang}*")
emb_files = []
txt_files = []
for emb_fi in files:
emb_files.append(emb_fi)
txt_fi = emb_fi.replace(prefix, "sentences")
txt_files.append(txt_fi)
return emb_files, txt_files
def load_batch(emb_file, dim):
embeddings = np.fromfile(emb_file, dtype=np.float32)
num_rows = int(embeddings.shape[0] / dim)
embeddings = embeddings.reshape((num_rows, dim))
faiss.normalize_L2(embeddings)
return embeddings
def knnGPU_sharded(x_batches_f, y_batches_f, dim, k, direction="x2y"):
if not has_faiss:
raise ImportError("Please install Faiss")
sims = []
inds = []
xfrom = 0
xto = 0
for x_batch_f in x_batches_f:
yfrom = 0
yto = 0
x_batch = load_batch(x_batch_f, dim)
xto = xfrom + x_batch.shape[0]
bsims, binds = [], []
for y_batch_f in y_batches_f:
y_batch = load_batch(y_batch_f, dim)
neighbor_size = min(k, y_batch.shape[0])
yto = yfrom + y_batch.shape[0]
print("{}-{} -> {}-{}".format(xfrom, xto, yfrom, yto))
idx = faiss.IndexFlatIP(dim)
idx = faiss.index_cpu_to_all_gpus(idx)
idx.add(y_batch)
bsim, bind = idx.search(x_batch, neighbor_size)
bsims.append(bsim)
binds.append(bind + yfrom)
yfrom += y_batch.shape[0]
del idx
del y_batch
bsims = np.concatenate(bsims, axis=1)
binds = np.concatenate(binds, axis=1)
aux = np.argsort(-bsims, axis=1)
sim_batch = np.zeros((x_batch.shape[0], k), dtype=np.float32)
ind_batch = np.zeros((x_batch.shape[0], k), dtype=np.int64)
for i in range(x_batch.shape[0]):
for j in range(k):
sim_batch[i, j] = bsims[i, aux[i, j]]
ind_batch[i, j] = binds[i, aux[i, j]]
sims.append(sim_batch)
inds.append(ind_batch)
xfrom += x_batch.shape[0]
del x_batch
sim = np.concatenate(sims, axis=0)
ind = np.concatenate(inds, axis=0)
return sim, ind
def score(sim, fwd_mean, bwd_mean, margin):
return margin(sim, (fwd_mean + bwd_mean) / 2)
def score_candidates(
sim_mat, candidate_inds, fwd_mean, bwd_mean, margin, verbose=False
):
print(" - scoring {:d} candidates".format(sim_mat.shape[0]))
scores = np.zeros(candidate_inds.shape)
for i in range(scores.shape[0]):
for j in range(scores.shape[1]):
k = int(candidate_inds[i, j])
scores[i, j] = score(sim_mat[i, j], fwd_mean[i], bwd_mean[k], margin)
return scores
def load_text(files):
all_sentences = []
for fi in files:
with open(fi) as sentence_fi:
for line in sentence_fi:
all_sentences.append(line.strip())
print(f"Read {len(all_sentences)} sentences")
return all_sentences
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Mine bitext")
parser.add_argument("--src-lang", help="Source language")
parser.add_argument("--tgt-lang", help="Target language")
parser.add_argument(
"--dict-path", help="Path to dictionary file", default="dict.txt"
)
parser.add_argument(
"--spm-path", help="Path to SPM model file", default="sentence.bpe.model"
)
parser.add_argument("--dim", type=int, default=1024, help="Embedding dimension")
parser.add_argument("--mem", type=int, default=5, help="Memory in GB")
parser.add_argument("--src-dir", help="Source directory")
parser.add_argument("--tgt-dir", help="Target directory")
parser.add_argument("--output", help="Output path")
parser.add_argument(
"--neighborhood", type=int, default=4, help="Embedding dimension"
)
parser.add_argument(
"--threshold", type=float, default=1.06, help="Threshold on mined bitext"
)
parser.add_argument(
"--valid-size",
type=int,
default=2000,
help="Number of sentences used for validation set",
)
parser.add_argument(
"--min-count",
type=int,
default=50000,
help="Min num sentences used for each language",
)
args = parser.parse_args()
x_batches_f, x_sents_f = get_batches(args.src_dir, args.src_lang)
y_batches_f, y_sents_f = get_batches(args.tgt_dir, args.tgt_lang)
margin = lambda a, b: a / b
y2x_sim, y2x_ind = knnGPU_sharded(
y_batches_f, x_batches_f, args.dim, args.neighborhood, direction="y2x"
)
x2y_sim, x2y_ind = knnGPU_sharded(
x_batches_f, y_batches_f, args.dim, args.neighborhood, direction="x2y"
)
x2y_mean = x2y_sim.mean(axis=1)
y2x_mean = y2x_sim.mean(axis=1)
fwd_scores = score_candidates(x2y_sim, x2y_ind, x2y_mean, y2x_mean, margin)
bwd_scores = score_candidates(y2x_sim, y2x_ind, y2x_mean, x2y_mean, margin)
fwd_best = x2y_ind[np.arange(x2y_sim.shape[0]), fwd_scores.argmax(axis=1)]
bwd_best = y2x_ind[np.arange(y2x_sim.shape[0]), bwd_scores.argmax(axis=1)]
indices = np.stack(
(
np.concatenate((np.arange(x2y_ind.shape[0]), bwd_best)),
np.concatenate((fwd_best, np.arange(y2x_ind.shape[0]))),
),
axis=1,
)
scores = np.concatenate((fwd_scores.max(axis=1), bwd_scores.max(axis=1)))
x_sentences = load_text(x_sents_f)
y_sentences = load_text(y_sents_f)
threshold = args.threshold
min_count = args.min_count
seen_src, seen_trg = set(), set()
directory = args.output
call(f"mkdir -p {directory}")
src_out = open(
f"{directory}/all.{args.src_lang}",
mode="w",
encoding="utf-8",
errors="surrogateescape",
)
tgt_out = open(
f"{directory}/all.{args.tgt_lang}",
mode="w",
encoding="utf-8",
errors="surrogateescape",
)
scores_out = open(
f"{directory}/all.scores", mode="w", encoding="utf-8", errors="surrogateescape"
)
count = 0
for i in np.argsort(-scores):
src_ind, trg_ind = indices[i]
if src_ind not in seen_src and trg_ind not in seen_trg:
seen_src.add(src_ind)
seen_trg.add(trg_ind)
if scores[i] > threshold or count < min_count:
if x_sentences[src_ind]:
print(scores[i], file=scores_out)
print(x_sentences[src_ind], file=src_out)
print(y_sentences[trg_ind], file=tgt_out)
count += 1
else:
print(f"Ignoring sentence: {x_sentences[src_ind]}")
src_out.close()
tgt_out.close()
scores_out.close()
print(f"Found {count} pairs for threshold={threshold}")
with open(f"{directory}/all.{args.src_lang}") as all_s, open(
f"{directory}/all.{args.tgt_lang}"
) as all_t, open(f"{directory}/valid.{args.src_lang}", "w") as valid_s, open(
f"{directory}/valid.{args.tgt_lang}", "w"
) as valid_t, open(
f"{directory}/train.{args.src_lang}", "w"
) as train_s, open(
f"{directory}/train.{args.tgt_lang}", "w"
) as train_t:
count = 0
for s_line, t_line in zip(all_s, all_t):
s_line = s_line.split("\t")[1]
t_line = t_line.split("\t")[1]
if count >= args.valid_size:
train_s.write(s_line)
train_t.write(t_line)
else:
valid_s.write(s_line)
valid_t.write(t_line)
count += 1