Spaces:
Runtime error
Runtime error
OFA-OCR-dedao-demo001
/
fairseq
/examples
/speech_synthesis
/preprocessing
/get_vctk_audio_manifest.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import logging | |
import numpy as np | |
import re | |
from pathlib import Path | |
from collections import defaultdict | |
import pandas as pd | |
from torchaudio.datasets import VCTK | |
from tqdm import tqdm | |
from examples.speech_to_text.data_utils import save_df_to_tsv | |
log = logging.getLogger(__name__) | |
SPLITS = ["train", "dev", "test"] | |
def normalize_text(text): | |
return re.sub(r"[^a-zA-Z.?!,'\- ]", '', text) | |
def process(args): | |
out_root = Path(args.output_data_root).absolute() | |
out_root.mkdir(parents=True, exist_ok=True) | |
# Generate TSV manifest | |
print("Generating manifest...") | |
dataset = VCTK(out_root.as_posix(), download=False) | |
ids = list(dataset._walker) | |
np.random.seed(args.seed) | |
np.random.shuffle(ids) | |
n_train = len(ids) - args.n_dev - args.n_test | |
_split = ["train"] * n_train + ["dev"] * args.n_dev + ["test"] * args.n_test | |
id_to_split = dict(zip(ids, _split)) | |
manifest_by_split = {split: defaultdict(list) for split in SPLITS} | |
progress = tqdm(enumerate(dataset), total=len(dataset)) | |
for i, (waveform, _, text, speaker_id, _) in progress: | |
sample_id = dataset._walker[i] | |
_split = id_to_split[sample_id] | |
audio_dir = Path(dataset._path) / dataset._folder_audio / speaker_id | |
audio_path = audio_dir / f"{sample_id}.wav" | |
text = normalize_text(text) | |
manifest_by_split[_split]["id"].append(sample_id) | |
manifest_by_split[_split]["audio"].append(audio_path.as_posix()) | |
manifest_by_split[_split]["n_frames"].append(len(waveform[0])) | |
manifest_by_split[_split]["tgt_text"].append(text) | |
manifest_by_split[_split]["speaker"].append(speaker_id) | |
manifest_by_split[_split]["src_text"].append(text) | |
manifest_root = Path(args.output_manifest_root).absolute() | |
manifest_root.mkdir(parents=True, exist_ok=True) | |
for _split in SPLITS: | |
save_df_to_tsv( | |
pd.DataFrame.from_dict(manifest_by_split[_split]), | |
manifest_root / f"{_split}.audio.tsv" | |
) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--output-data-root", "-d", required=True, type=str) | |
parser.add_argument("--output-manifest-root", "-m", required=True, type=str) | |
parser.add_argument("--n-dev", default=50, type=int) | |
parser.add_argument("--n-test", default=100, type=int) | |
parser.add_argument("--seed", "-s", default=1234, type=int) | |
args = parser.parse_args() | |
process(args) | |
if __name__ == "__main__": | |
main() | |