JustinLin610's picture
first commit
ee21b96
raw
history blame
5.1 kB
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
import torch
from dataclasses import dataclass, field
import json
import logging
from typing import Optional
from argparse import Namespace
import Levenshtein
from fairseq import metrics, utils
from fairseq.tasks import register_task
from tasks.ofa_task import OFATask, OFAConfig
from data.mm_data.ocr_dataset import OcrDataset
from data.file_dataset import FileDataset
EVAL_BLEU_ORDER = 4
logger = logging.getLogger(__name__)
@dataclass
class OcrConfig(OFAConfig):
is_document: bool = field(
default=False, metadata={"help": "enable special resizing for document data."}
)
eval_args: Optional[str] = field(
default="{}",
metadata={
"help": 'generation args, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string'
},
)
@register_task("ocr", dataclass=OcrConfig)
class OcrTask(OFATask):
def __init__(self, cfg: OcrConfig, src_dict, tgt_dict):
super().__init__(cfg, src_dict, tgt_dict)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
paths = self.cfg.data.split(",")
assert len(paths) > 0
if split == 'train':
file_path = paths[(epoch - 1) % (len(paths) - 1)]
else:
file_path = paths[-1]
dataset = FileDataset(file_path, self.cfg.selected_cols)
self.datasets[split] = OcrDataset(
split,
dataset,
self.bpe,
self.src_dict,
self.tgt_dict,
max_src_length=self.cfg.max_src_length,
max_tgt_length=self.cfg.max_tgt_length,
patch_image_size=self.cfg.patch_image_size,
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std,
is_document=self.cfg.is_document,
)
def build_model(self, cfg):
model = super().build_model(cfg)
gen_args = json.loads(self.cfg.eval_args)
self.sequence_generator = self.build_generator([model], Namespace(**gen_args))
return model
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = criterion(model, sample)
model.eval()
hyps, refs = self._inference(self.sequence_generator, sample, model)
acc = [1.0 if hyp == ref else 0.0 for hyp, ref in zip(hyps, refs)]
distance = [
Levenshtein.distance(hyp, ref) / max(len(hyp), len(ref))
for hyp, ref in zip(hyps, refs)
]
logging_output["_acc_sum"] = sum(acc)
logging_output["_acc_cnt"] = len(acc)
logging_output["_dist_sum"] = sum(distance)
logging_output["_dist_cnt"] = len(distance)
return loss, sample_size, logging_output
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
def sum_logs(key):
result = sum(log.get(key, 0) for log in logging_outputs)
if torch.is_tensor(result):
result = result.cpu()
return result
def compute_acc(meters):
score = meters["_acc_sum"].sum / meters["_acc_cnt"].sum
score = score if isinstance(score, float) else score.item()
return round(score, 4)
def compute_ned(meters):
score = meters["_dist_sum"].sum / meters["_dist_cnt"].sum
score = score if isinstance(score, float) else score.item()
score = 1.0 - score
return round(score, 4)
if sum_logs("_acc_cnt") > 0:
metrics.log_scalar("_acc_sum", sum_logs("_acc_sum"))
metrics.log_scalar("_acc_cnt", sum_logs("_acc_cnt"))
metrics.log_derived("acc", compute_acc)
metrics.log_scalar("_dist_sum", sum_logs("_dist_sum"))
metrics.log_scalar("_dist_cnt", sum_logs("_dist_cnt"))
metrics.log_derived("ned", compute_ned)
def _inference(self, generator, sample, model):
def decode(toks, escape_unk=False):
s = self.tgt_dict.string(
toks.int().cpu(),
unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"),
)
if self.bpe:
s = self.bpe.decode(s)
return s
gen_out = self.inference_step(generator, [model], sample)
hyps, refs = [], []
for i in range(len(gen_out)):
decode_tokens = decode(gen_out[i][0]["tokens"])
hyps.append(decode_tokens.strip().replace(" ", ""))
refs.append(
decode(
utils.strip_pad(sample["target"][i], self.tgt_dict.pad()),
escape_unk=True,
)
.strip()
.replace(" ", "")
)
if self.cfg.eval_print_samples:
logger.info("example hypothesis: " + hyps[0])
logger.info("example reference: " + ' && '.join(refs[0]))
return hyps, refs