Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 -u | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Sample from a trained LM; hacked fairseq-interactive | |
""" | |
from collections import namedtuple | |
import os | |
import ast | |
import numpy as np | |
from fairseq import checkpoint_utils, options, tasks, utils | |
import tqdm | |
Batch = namedtuple('Batch', 'ids src_tokens src_lengths') | |
Translation = namedtuple('Translation', 'src_str hypos pos_scores alignments') | |
def make_batches(lines, args, task, max_positions): | |
tokens = [ | |
task.source_dictionary.encode_line( | |
src_str, add_if_not_exist=False | |
).long() | |
for src_str in lines | |
] | |
lengths = [t.numel() for t in tokens] | |
itr = task.get_batch_iterator( | |
dataset=task.build_dataset_for_inference(tokens, lengths), | |
max_tokens=args.dataset.max_tokens, | |
max_sentences=args.dataset.batch_size, | |
max_positions=max_positions, | |
ignore_invalid_inputs=args.dataset.skip_invalid_size_inputs_valid_test | |
).next_epoch_itr(shuffle=False) | |
for batch in itr: | |
yield Batch( | |
ids=batch['id'], | |
src_tokens=batch['net_input']['src_tokens'], src_lengths=batch['net_input']['src_lengths'], | |
) | |
def main(args): | |
arg_prompts = args.prompts | |
arg_output = args.output | |
arg_debug = args.debug | |
arg_sample_size = args.samples_per_prompt | |
try: | |
from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
args = convert_namespace_to_omegaconf(args) | |
except: | |
pass | |
# if args.max_tokens is None and args.max_sentences is None: | |
if args.common.seed is not None: | |
np.random.seed(args.common.seed) | |
utils.set_torch_seed(args.common.seed) | |
if args.generation.sampling: | |
args.generation.nbest = args.generation.beam = arg_sample_size | |
task = tasks.setup_task(args.task) | |
overrides = ast.literal_eval(args.common_eval.model_overrides) | |
models, _model_args = checkpoint_utils.load_model_ensemble( | |
args.common_eval.path.split(os.pathsep), | |
arg_overrides=overrides, | |
task=task, | |
suffix=getattr(args, "checkpoint_suffix", ""), | |
) | |
# Set dictionaries | |
src_dict = task.source_dictionary | |
tgt_dict = task.target_dictionary | |
# Optimize ensemble for generation | |
for model in models: | |
model.prepare_for_inference_(args) | |
model.cuda() | |
# Load alignment dictionary for unknown word replacement | |
# (None if no unknown word replacement, empty if no path to align dictionary) | |
align_dict = utils.load_align_dict(args.generation.replace_unk) | |
max_positions = utils.resolve_max_positions( | |
task.max_positions(), | |
*[model.max_positions() for model in models] | |
) | |
output_file = open(arg_output, 'w') | |
with open(arg_prompts, 'r') as fin: | |
lines = fin.readlines() | |
split = [x.split('|', 1) for x in lines] | |
seq_id = [x[0] for x in split] | |
prompts = [x[1] for x in split] | |
if args.generation.prefix_size >= 0: | |
prompts = [' '.join(l.split()[:args.generation.prefix_size]) | |
for l in prompts] | |
if arg_debug: | |
prompts = prompts[:10] | |
generator = task.build_generator(models, args.generation) | |
start_id = 0 | |
pbar = tqdm.tqdm(total=len(prompts)) | |
for batch in make_batches(prompts, args, task, max_positions): | |
src_tokens = batch.src_tokens | |
src_lengths = batch.src_lengths | |
src_tokens = src_tokens.cuda() | |
src_lengths = src_lengths.cuda() | |
sample = { | |
'net_input': { | |
'src_tokens': src_tokens, | |
'src_lengths': src_lengths, | |
}, | |
} | |
results = [] | |
translations = task.inference_step(generator, models, sample) | |
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)): | |
src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad()) | |
results.append((i + start_id, src_tokens_i, hypos)) | |
# sort output to match input order | |
for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]): | |
if src_dict is not None: | |
src_str = src_dict.string( | |
src_tokens, args.common_eval.post_process) | |
# Process top predictions | |
for hypo_id, hypo in enumerate(hypos): | |
_hypo_tokens, hypo_str, _alignment = utils.post_process_prediction( | |
hypo_tokens=hypo['tokens'].int().cpu(), | |
src_str=src_str, | |
alignment=hypo['alignment'], | |
align_dict=align_dict, | |
tgt_dict=tgt_dict, | |
remove_bpe=args.common_eval.post_process, | |
) | |
detok_hypo_str = hypo_str | |
utterance = detok_hypo_str | |
print(f'{seq_id[id]}__{hypo_id}|{utterance}', file=output_file) | |
pbar.update(1) | |
start_id += len(results) | |
# output_file.close() | |
def cli_main(): | |
parser = options.get_interactive_generation_parser() | |
parser.add_argument('--prompts', type=str, default=None, required=True) | |
parser.add_argument('--output', type=str, default=None, required=True) | |
parser.add_argument('--debug', action='store_true') | |
parser.add_argument('--samples-per-prompt', type=int, default=1) | |
args = options.parse_args_and_arch(parser) | |
np.random.seed(args.seed) | |
utils.set_torch_seed(args.seed) | |
main(args) | |
if __name__ == '__main__': | |
cli_main() | |