Spaces:
Runtime error
Runtime error
# ***************************************************************************** | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# * Neither the name of the NVIDIA CORPORATION nor the | |
# names of its contributors may be used to endorse or promote products | |
# derived from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# | |
# ***************************************************************************** | |
import copy | |
import torch | |
from torch.autograd import Variable | |
import torch.nn.functional as F | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
n_channels_int = n_channels[0] | |
in_act = input_a+input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
class WaveGlowLoss(torch.nn.Module): | |
def __init__(self, sigma=1.0): | |
super(WaveGlowLoss, self).__init__() | |
self.sigma = sigma | |
def forward(self, model_output): | |
z, log_s_list, log_det_W_list = model_output | |
for i, log_s in enumerate(log_s_list): | |
if i == 0: | |
log_s_total = torch.sum(log_s) | |
log_det_W_total = log_det_W_list[i] | |
else: | |
log_s_total = log_s_total + torch.sum(log_s) | |
log_det_W_total += log_det_W_list[i] | |
loss = torch.sum(z*z)/(2*self.sigma*self.sigma) - log_s_total - log_det_W_total | |
return loss/(z.size(0)*z.size(1)*z.size(2)) | |
class Invertible1x1Conv(torch.nn.Module): | |
""" | |
The layer outputs both the convolution, and the log determinant | |
of its weight matrix. If reverse=True it does convolution with | |
inverse | |
""" | |
def __init__(self, c): | |
super(Invertible1x1Conv, self).__init__() | |
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0, | |
bias=False) | |
# Sample a random orthonormal matrix to initialize weights | |
W = torch.qr(torch.FloatTensor(c, c).normal_())[0] | |
# Ensure determinant is 1.0 not -1.0 | |
if torch.det(W) < 0: | |
W[:,0] = -1*W[:,0] | |
W = W.view(c, c, 1) | |
self.conv.weight.data = W | |
def forward(self, z, reverse=False): | |
# shape | |
batch_size, group_size, n_of_groups = z.size() | |
W = self.conv.weight.squeeze() | |
if reverse: | |
if not hasattr(self, 'W_inverse'): | |
# Reverse computation | |
W_inverse = W.float().inverse() | |
W_inverse = Variable(W_inverse[..., None]) | |
if z.type() == 'torch.cuda.HalfTensor': | |
W_inverse = W_inverse.half() | |
self.W_inverse = W_inverse | |
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) | |
return z | |
else: | |
# Forward computation | |
log_det_W = batch_size * n_of_groups * torch.logdet(W) | |
z = self.conv(z) | |
return z, log_det_W | |
class WN(torch.nn.Module): | |
""" | |
This is the WaveNet like layer for the affine coupling. The primary difference | |
from WaveNet is the convolutions need not be causal. There is also no dilation | |
size reset. The dilation only doubles on each layer | |
""" | |
def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels, | |
kernel_size): | |
super(WN, self).__init__() | |
assert(kernel_size % 2 == 1) | |
assert(n_channels % 2 == 0) | |
self.n_layers = n_layers | |
self.n_channels = n_channels | |
self.in_layers = torch.nn.ModuleList() | |
self.res_skip_layers = torch.nn.ModuleList() | |
start = torch.nn.Conv1d(n_in_channels, n_channels, 1) | |
start = torch.nn.utils.weight_norm(start, name='weight') | |
self.start = start | |
# Initializing last layer to 0 makes the affine coupling layers | |
# do nothing at first. This helps with training stability | |
end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1) | |
end.weight.data.zero_() | |
end.bias.data.zero_() | |
self.end = end | |
cond_layer = torch.nn.Conv1d(n_mel_channels, 2*n_channels*n_layers, 1) | |
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') | |
for i in range(n_layers): | |
dilation = 2 ** i | |
padding = int((kernel_size*dilation - dilation)/2) | |
in_layer = torch.nn.Conv1d(n_channels, 2*n_channels, kernel_size, | |
dilation=dilation, padding=padding) | |
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') | |
self.in_layers.append(in_layer) | |
# last one is not necessary | |
if i < n_layers - 1: | |
res_skip_channels = 2*n_channels | |
else: | |
res_skip_channels = n_channels | |
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) | |
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') | |
self.res_skip_layers.append(res_skip_layer) | |
def forward(self, forward_input): | |
audio, spect = forward_input | |
audio = self.start(audio) | |
output = torch.zeros_like(audio) | |
n_channels_tensor = torch.IntTensor([self.n_channels]) | |
spect = self.cond_layer(spect) | |
for i in range(self.n_layers): | |
spect_offset = i*2*self.n_channels | |
acts = fused_add_tanh_sigmoid_multiply( | |
self.in_layers[i](audio), | |
spect[:,spect_offset:spect_offset+2*self.n_channels,:], | |
n_channels_tensor) | |
res_skip_acts = self.res_skip_layers[i](acts) | |
if i < self.n_layers - 1: | |
audio = audio + res_skip_acts[:,:self.n_channels,:] | |
output = output + res_skip_acts[:,self.n_channels:,:] | |
else: | |
output = output + res_skip_acts | |
return self.end(output) | |
class WaveGlow(torch.nn.Module): | |
def __init__(self, n_mel_channels, n_flows, n_group, n_early_every, | |
n_early_size, WN_config): | |
super(WaveGlow, self).__init__() | |
self.upsample = torch.nn.ConvTranspose1d(n_mel_channels, | |
n_mel_channels, | |
1024, stride=256) | |
assert(n_group % 2 == 0) | |
self.n_flows = n_flows | |
self.n_group = n_group | |
self.n_early_every = n_early_every | |
self.n_early_size = n_early_size | |
self.WN = torch.nn.ModuleList() | |
self.convinv = torch.nn.ModuleList() | |
n_half = int(n_group/2) | |
# Set up layers with the right sizes based on how many dimensions | |
# have been output already | |
n_remaining_channels = n_group | |
for k in range(n_flows): | |
if k % self.n_early_every == 0 and k > 0: | |
n_half = n_half - int(self.n_early_size/2) | |
n_remaining_channels = n_remaining_channels - self.n_early_size | |
self.convinv.append(Invertible1x1Conv(n_remaining_channels)) | |
self.WN.append(WN(n_half, n_mel_channels*n_group, **WN_config)) | |
self.n_remaining_channels = n_remaining_channels # Useful during inference | |
def forward(self, forward_input): | |
""" | |
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames | |
forward_input[1] = audio: batch x time | |
""" | |
spect, audio = forward_input | |
# Upsample spectrogram to size of audio | |
spect = self.upsample(spect) | |
assert(spect.size(2) >= audio.size(1)) | |
if spect.size(2) > audio.size(1): | |
spect = spect[:, :, :audio.size(1)] | |
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) | |
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1) | |
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) | |
output_audio = [] | |
log_s_list = [] | |
log_det_W_list = [] | |
for k in range(self.n_flows): | |
if k % self.n_early_every == 0 and k > 0: | |
output_audio.append(audio[:,:self.n_early_size,:]) | |
audio = audio[:,self.n_early_size:,:] | |
audio, log_det_W = self.convinv[k](audio) | |
log_det_W_list.append(log_det_W) | |
n_half = int(audio.size(1)/2) | |
audio_0 = audio[:,:n_half,:] | |
audio_1 = audio[:,n_half:,:] | |
output = self.WN[k]((audio_0, spect)) | |
log_s = output[:, n_half:, :] | |
b = output[:, :n_half, :] | |
audio_1 = torch.exp(log_s)*audio_1 + b | |
log_s_list.append(log_s) | |
audio = torch.cat([audio_0, audio_1],1) | |
output_audio.append(audio) | |
return torch.cat(output_audio,1), log_s_list, log_det_W_list | |
def infer(self, spect, sigma=1.0): | |
spect = self.upsample(spect) | |
# trim conv artifacts. maybe pad spec to kernel multiple | |
time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] | |
spect = spect[:, :, :-time_cutoff] | |
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) | |
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1) | |
if spect.type() == 'torch.cuda.HalfTensor': | |
audio = torch.cuda.HalfTensor(spect.size(0), | |
self.n_remaining_channels, | |
spect.size(2)).normal_() | |
else: | |
audio = torch.cuda.FloatTensor(spect.size(0), | |
self.n_remaining_channels, | |
spect.size(2)).normal_() | |
audio = torch.autograd.Variable(sigma*audio) | |
for k in reversed(range(self.n_flows)): | |
n_half = int(audio.size(1)/2) | |
audio_0 = audio[:,:n_half,:] | |
audio_1 = audio[:,n_half:,:] | |
output = self.WN[k]((audio_0, spect)) | |
s = output[:, n_half:, :] | |
b = output[:, :n_half, :] | |
audio_1 = (audio_1 - b)/torch.exp(s) | |
audio = torch.cat([audio_0, audio_1],1) | |
audio = self.convinv[k](audio, reverse=True) | |
if k % self.n_early_every == 0 and k > 0: | |
if spect.type() == 'torch.cuda.HalfTensor': | |
z = torch.cuda.HalfTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_() | |
else: | |
z = torch.cuda.FloatTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_() | |
audio = torch.cat((sigma*z, audio),1) | |
audio = audio.permute(0,2,1).contiguous().view(audio.size(0), -1).data | |
return audio | |
def remove_weightnorm(model): | |
waveglow = model | |
for WN in waveglow.WN: | |
WN.start = torch.nn.utils.remove_weight_norm(WN.start) | |
WN.in_layers = remove(WN.in_layers) | |
WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer) | |
WN.res_skip_layers = remove(WN.res_skip_layers) | |
return waveglow | |
def remove(conv_list): | |
new_conv_list = torch.nn.ModuleList() | |
for old_conv in conv_list: | |
old_conv = torch.nn.utils.remove_weight_norm(old_conv) | |
new_conv_list.append(old_conv) | |
return new_conv_list | |