JustinLin610's picture
first commit
ee21b96
raw
history blame
21 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from enum import Enum, auto
import math
import numpy as np
from typing import Tuple, List, Optional, Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autograd
from fairseq import checkpoint_utils, utils
from fairseq.dataclass import FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model
from fairseq.modules import (
SamePad,
TransposeLast,
)
class SegmentationType(Enum):
NONE = auto()
RANDOM = auto()
UNIFORM_RANDOM = auto()
UNIFORM_RANDOM_JOIN = auto()
JOIN = auto()
@dataclass
class SegmentationConfig(FairseqDataclass):
type: SegmentationType = SegmentationType.NONE
subsample_rate: float = 0.25
mean_pool: bool = True
mean_pool_join: bool = False
remove_zeros: bool = False
@dataclass
class Wav2vec_UConfig(FairseqDataclass):
discriminator_kernel: int = 3
discriminator_dilation: int = 1
discriminator_dim: int = 256
discriminator_causal: bool = True
discriminator_linear_emb: bool = False
discriminator_depth: int = 1
discriminator_max_pool: bool = False
discriminator_act_after_linear: bool = False
discriminator_dropout: float = 0.0
discriminator_spectral_norm: bool = False
discriminator_weight_norm: bool = False
generator_kernel: int = 4
generator_dilation: int = 1
generator_stride: int = 1
generator_bias: bool = False
generator_dropout: float = 0.0
blank_weight: float = 0
blank_mode: str = "add"
blank_is_sil: bool = False
no_softmax: bool = False
smoothness_weight: float = 0.0
smoothing: float = 0.0
smoothing_one_sided: bool = False
gradient_penalty: float = 0.0
probabilistic_grad_penalty_slicing: bool = False
code_penalty: float = 0.0
gumbel: bool = False
hard_gumbel: bool = True
temp: Tuple[float, float, float] = (2, 0.1, 0.99995)
input_dim: int = 128
segmentation: SegmentationConfig = SegmentationConfig()
class Segmenter(nn.Module):
cfg: SegmentationConfig
def __init__(self, cfg: SegmentationConfig):
super().__init__()
self.cfg = cfg
self.subsample_rate = cfg.subsample_rate
def pre_segment(self, dense_x, dense_padding_mask):
return dense_x, dense_padding_mask
def logit_segment(self, logits, padding_mask):
return logits, padding_mask
class RandomSegmenter(Segmenter):
def pre_segment(self, dense_x, dense_padding_mask):
target_num = math.ceil(dense_x.size(1) * self.subsample_rate)
ones = torch.ones(dense_x.shape[:-1], device=dense_x.device)
indices, _ = ones.multinomial(target_num).sort(dim=-1)
indices_ld = indices.unsqueeze(-1).expand(-1, -1, dense_x.size(-1))
dense_x = dense_x.gather(1, indices_ld)
dense_padding_mask = dense_padding_mask.gather(1, index=indices)
return dense_x, dense_padding_mask
class UniformRandomSegmenter(Segmenter):
def pre_segment(self, dense_x, dense_padding_mask):
bsz, tsz, fsz = dense_x.shape
target_num = math.ceil(tsz * self.subsample_rate)
rem = tsz % target_num
if rem > 0:
dense_x = F.pad(dense_x, [0, 0, 0, target_num - rem])
dense_padding_mask = F.pad(
dense_padding_mask, [0, target_num - rem], value=True
)
dense_x = dense_x.view(bsz, target_num, -1, fsz)
dense_padding_mask = dense_padding_mask.view(bsz, target_num, -1)
if self.cfg.mean_pool:
dense_x = dense_x.mean(dim=-2)
dense_padding_mask = dense_padding_mask.all(dim=-1)
else:
ones = torch.ones((bsz, dense_x.size(2)), device=dense_x.device)
indices = ones.multinomial(1)
indices = indices.unsqueeze(-1).expand(-1, target_num, -1)
indices_ld = indices.unsqueeze(-1).expand(-1, -1, -1, fsz)
dense_x = dense_x.gather(2, indices_ld).reshape(bsz, -1, fsz)
dense_padding_mask = dense_padding_mask.gather(2, index=indices).reshape(
bsz, -1
)
return dense_x, dense_padding_mask
class JoinSegmenter(Segmenter):
def logit_segment(self, logits, padding_mask):
preds = logits.argmax(dim=-1)
if padding_mask.any():
preds[padding_mask] = -1 # mark pad
uniques = []
bsz, tsz, csz = logits.shape
for p in preds:
uniques.append(
p.cpu().unique_consecutive(return_inverse=True, return_counts=True)
)
new_tsz = max(u[0].numel() for u in uniques)
new_logits = logits.new_zeros(bsz, new_tsz, csz)
new_pad = padding_mask.new_zeros(bsz, new_tsz)
for b in range(bsz):
u, idx, c = uniques[b]
keep = u != -1
if self.cfg.remove_zeros:
keep.logical_and_(u != 0)
if self.training and not self.cfg.mean_pool_join:
u[0] = 0
u[1:] = c.cumsum(0)[:-1]
m = c > 1
r = torch.rand(m.sum())
o = (c[m] * r).long()
u[m] += o
new_logits[b, : u.numel()] = logits[b, u]
else:
new_logits[b].index_add_(
dim=0, index=idx.to(new_logits.device), source=logits[b]
)
new_logits[b, : c.numel()] /= c.unsqueeze(-1).to(new_logits.device)
new_sz = keep.sum()
if not keep.all():
kept_logits = new_logits[b, : c.numel()][keep]
new_logits[b, :new_sz] = kept_logits
if new_sz < new_tsz:
pad = new_tsz - new_sz
new_logits[b, -pad:] = 0
new_pad[b, -pad:] = True
return new_logits, new_pad
class UniformRandomJoinSegmenter(UniformRandomSegmenter, JoinSegmenter):
pass
SEGMENT_FACTORY = {
SegmentationType.NONE: Segmenter,
SegmentationType.RANDOM: RandomSegmenter,
SegmentationType.UNIFORM_RANDOM: UniformRandomSegmenter,
SegmentationType.UNIFORM_RANDOM_JOIN: UniformRandomJoinSegmenter,
SegmentationType.JOIN: JoinSegmenter,
}
class Discriminator(nn.Module):
def __init__(self, dim, cfg: Wav2vec_UConfig):
super().__init__()
inner_dim = cfg.discriminator_dim
kernel = cfg.discriminator_kernel
dilation = cfg.discriminator_dilation
self.max_pool = cfg.discriminator_max_pool
if cfg.discriminator_causal:
padding = kernel - 1
else:
padding = kernel // 2
def make_conv(in_d, out_d, k, p=0, has_dilation=True):
conv = nn.Conv1d(
in_d,
out_d,
kernel_size=k,
padding=p,
dilation=dilation if has_dilation else 1,
)
if cfg.discriminator_spectral_norm:
conv = nn.utils.spectral_norm(conv)
elif cfg.discriminator_weight_norm:
conv = nn.utils.weight_norm(conv)
return conv
inner_net = [
nn.Sequential(
make_conv(inner_dim, inner_dim, kernel, padding),
SamePad(kernel_size=kernel, causal=cfg.discriminator_causal),
nn.Dropout(cfg.discriminator_dropout),
nn.GELU(),
)
for _ in range(cfg.discriminator_depth - 1)
] + [
make_conv(inner_dim, 1, kernel, padding, has_dilation=False),
SamePad(kernel_size=kernel, causal=cfg.discriminator_causal),
]
if cfg.discriminator_linear_emb:
emb_net = [make_conv(dim, inner_dim, 1)]
else:
emb_net = [
make_conv(dim, inner_dim, kernel, padding),
SamePad(kernel_size=kernel, causal=cfg.discriminator_causal),
]
if cfg.discriminator_act_after_linear:
emb_net.append(nn.GELU())
self.net = nn.Sequential(
*emb_net,
nn.Dropout(cfg.discriminator_dropout),
*inner_net,
)
def forward(self, x, padding_mask):
x = x.transpose(1, 2) # BTC -> BCT
x = self.net(x)
x = x.transpose(1, 2)
x_sz = x.size(1)
if padding_mask is not None and padding_mask.any() and padding_mask.dim() > 1:
padding_mask = padding_mask[:, : x.size(1)]
x[padding_mask] = float("-inf") if self.max_pool else 0
x_sz = x_sz - padding_mask.sum(dim=-1)
x = x.squeeze(-1)
if self.max_pool:
x, _ = x.max(dim=-1)
else:
x = x.sum(dim=-1)
x = x / x_sz
return x
class Generator(nn.Module):
def __init__(self, input_dim, output_dim, cfg: Wav2vec_UConfig):
super().__init__()
self.cfg = cfg
self.output_dim = output_dim
self.stride = cfg.generator_stride
self.dropout = nn.Dropout(cfg.generator_dropout)
padding = cfg.generator_kernel // 2
self.proj = nn.Sequential(
TransposeLast(),
nn.Conv1d(
input_dim,
output_dim,
kernel_size=cfg.generator_kernel,
stride=cfg.generator_stride,
dilation=cfg.generator_dilation,
padding=padding,
bias=cfg.generator_bias,
),
TransposeLast(),
)
def forward(self, dense_x, tokens, dense_padding_mask):
dense_x = self.dropout(dense_x)
dense_x = self.proj(dense_x)
if self.stride > 1:
dense_padding_mask = dense_padding_mask[:, :: self.stride]
if dense_padding_mask.size(1) != dense_x.size(1):
new_padding = dense_padding_mask.new_zeros(dense_x.shape[:-1])
diff = new_padding.size(1) - dense_padding_mask.size(1)
assert (
diff > 0
), f"{new_padding.shape}, {dense_padding_mask.shape}, {dense_x.shape}, {diff}"
if diff > 0:
new_padding[:, diff:] = dense_padding_mask
else:
assert diff < 0
new_padding = dense_padding_mask[:, :diff]
dense_padding_mask = new_padding
result = {}
token_x = None
if tokens is not None:
token_x = dense_x.new_zeros(tokens.numel(), self.output_dim)
token_x.scatter_(1, tokens.view(-1, 1).long(), 1)
token_x = token_x.view(tokens.shape + (self.output_dim,))
result["dense_x"] = dense_x
result["token_x"] = token_x
result["dense_padding_mask"] = dense_padding_mask
return result
@register_model("wav2vec_u", dataclass=Wav2vec_UConfig)
class Wav2vec_U(BaseFairseqModel):
def calc_gradient_penalty(self, real_data, fake_data):
b_size = min(real_data.size(0), fake_data.size(0))
t_size = min(real_data.size(1), fake_data.size(1))
if self.cfg.probabilistic_grad_penalty_slicing:
def get_slice(data, dim, target_size):
size = data.size(dim)
diff = size - target_size
if diff <= 0:
return data
start = np.random.randint(0, diff + 1)
return data.narrow(dim=dim, start=start, length=target_size)
real_data = get_slice(real_data, 0, b_size)
real_data = get_slice(real_data, 1, t_size)
fake_data = get_slice(fake_data, 0, b_size)
fake_data = get_slice(fake_data, 1, t_size)
else:
real_data = real_data[:b_size, :t_size]
fake_data = fake_data[:b_size, :t_size]
alpha = torch.rand(real_data.size(0), 1, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.to(real_data.device)
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
disc_interpolates = self.discriminator(interpolates, None)
gradients = autograd.grad(
outputs=disc_interpolates,
inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size(), device=real_data.device),
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradient_penalty = (gradients.norm(2, dim=1) - 1) ** 2
return gradient_penalty
def set_num_updates(self, num_updates):
super().set_num_updates(num_updates)
self.update_num = num_updates
self.curr_temp = max(
self.max_temp * self.temp_decay ** num_updates, self.min_temp
)
def discrim_step(self, num_updates):
return num_updates % 2 == 1
def get_groups_for_update(self, num_updates):
return "discriminator" if self.discrim_step(num_updates) else "generator"
def __init__(self, cfg: Wav2vec_UConfig, target_dict):
super().__init__()
self.cfg = cfg
self.zero_index = target_dict.index("<SIL>") if "<SIL>" in target_dict else 0
self.smoothness_weight = cfg.smoothness_weight
output_size = len(target_dict)
self.pad = target_dict.pad()
self.eos = target_dict.eos()
self.smoothing = cfg.smoothing
self.smoothing_one_sided = cfg.smoothing_one_sided
self.no_softmax = cfg.no_softmax
self.gumbel = cfg.gumbel
self.hard_gumbel = cfg.hard_gumbel
self.last_acc = None
self.gradient_penalty = cfg.gradient_penalty
self.code_penalty = cfg.code_penalty
self.blank_weight = cfg.blank_weight
self.blank_mode = cfg.blank_mode
self.blank_index = target_dict.index("<SIL>") if cfg.blank_is_sil else 0
assert self.blank_index != target_dict.unk()
self.discriminator = Discriminator(output_size, cfg)
for p in self.discriminator.parameters():
p.param_group = "discriminator"
self.pca_A = self.pca_b = None
d = cfg.input_dim
self.segmenter = SEGMENT_FACTORY[cfg.segmentation.type](cfg.segmentation)
self.generator = Generator(d, output_size, cfg)
for p in self.generator.parameters():
p.param_group = "generator"
for p in self.segmenter.parameters():
p.param_group = "generator"
self.max_temp, self.min_temp, self.temp_decay = cfg.temp
self.curr_temp = self.max_temp
self.update_num = 0
@classmethod
def build_model(cls, cfg, task):
return cls(cfg, task.target_dictionary)
def get_logits(
self,
net_output: Optional[Dict[str, List[Optional[torch.Tensor]]]],
normalize: bool = False,
):
logits = net_output["logits"]
if self.blank_weight != 0:
if self.blank_mode == "add":
logits[..., self.blank_index] += self.blank_weight
elif self.blank_mode == "set":
logits[..., self.blank_index] = self.blank_weight
else:
raise Exception(f"invalid blank mode {self.blank_mode}")
padding = net_output["padding_mask"]
if padding.any():
logits[padding] = float("-inf")
logits[padding][..., self.blank_index] = float("inf")
if normalize:
logits = utils.log_softmax(logits.float(), dim=-1)
return logits.transpose(0, 1)
def get_normalized_probs(
self,
net_output: Tuple[
torch.Tensor, Optional[Dict[str, List[Optional[torch.Tensor]]]]
],
log_probs: bool,
sample: Optional[Dict[str, torch.Tensor]] = None,
):
logits = self.get_logits(net_output)
probs = super().get_normalized_probs(logits, log_probs, sample)
# BTC -> TBC for ctc
probs = probs.transpose(0, 1)
return probs
def normalize(self, dense_x):
bsz, tsz, csz = dense_x.shape
if dense_x.numel() == 0:
raise Exception(dense_x.shape)
_, k = dense_x.max(-1)
hard_x = (
dense_x.new_zeros(bsz * tsz, csz)
.scatter_(-1, k.view(-1, 1), 1.0)
.view(-1, csz)
)
hard_probs = torch.mean(hard_x.float(), dim=0)
code_perplexity = torch.exp(
-torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1)
)
avg_probs = torch.softmax(dense_x.reshape(-1, csz).float(), dim=-1).mean(dim=0)
prob_perplexity = torch.exp(
-torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1)
)
if not self.no_softmax:
if self.training and self.gumbel:
dense_x = F.gumbel_softmax(
dense_x.float(), tau=self.curr_temp, hard=self.hard_gumbel
).type_as(dense_x)
else:
dense_x = dense_x.softmax(-1)
return dense_x, code_perplexity, prob_perplexity
def forward(
self,
features,
padding_mask,
random_label=None,
dense_x_only=False,
segment=True,
):
if segment:
features, padding_mask = self.segmenter.pre_segment(features, padding_mask)
orig_size = features.size(0) * features.size(1) - padding_mask.sum()
gen_result = self.generator(features, random_label, padding_mask)
orig_dense_x, token_x = gen_result["dense_x"], gen_result["token_x"]
orig_dense_padding_mask = gen_result["dense_padding_mask"]
if segment:
dense_x, dense_padding_mask = self.segmenter.logit_segment(
orig_dense_x, orig_dense_padding_mask
)
else:
dense_x = orig_dense_x
dense_padding_mask = orig_dense_padding_mask
dense_logits = dense_x
prob_perplexity = None
code_perplexity = None
if not (self.no_softmax and dense_x_only):
dense_x, code_perplexity, prob_perplexity = self.normalize(dense_logits)
if dense_x_only or self.discriminator is None:
return {
"logits": dense_x,
"padding_mask": dense_padding_mask,
}
token_padding_mask = random_label == self.pad
dense_y = self.discriminator(dense_x, dense_padding_mask)
token_y = self.discriminator(token_x, token_padding_mask)
sample_size = features.size(0)
d_step = self.discrim_step(self.update_num)
fake_smooth = self.smoothing
real_smooth = self.smoothing
if self.smoothing_one_sided:
fake_smooth = 0
zero_loss = None
smoothness_loss = None
code_pen = None
if d_step:
loss_dense = F.binary_cross_entropy_with_logits(
dense_y,
dense_y.new_ones(dense_y.shape) - fake_smooth,
reduction="sum",
)
loss_token = F.binary_cross_entropy_with_logits(
token_y,
token_y.new_zeros(token_y.shape) + real_smooth,
reduction="sum",
)
if self.training and self.gradient_penalty > 0:
grad_pen = self.calc_gradient_penalty(token_x, dense_x)
grad_pen = grad_pen.sum() * self.gradient_penalty
else:
grad_pen = None
else:
grad_pen = None
loss_token = None
loss_dense = F.binary_cross_entropy_with_logits(
dense_y,
dense_y.new_zeros(dense_y.shape) + fake_smooth,
reduction="sum",
)
num_vars = dense_x.size(-1)
if prob_perplexity is not None:
code_pen = (num_vars - prob_perplexity) / num_vars
code_pen = code_pen * sample_size * self.code_penalty
if self.smoothness_weight > 0:
smoothness_loss = F.mse_loss(
dense_logits[:, :-1], dense_logits[:, 1:], reduction="none"
)
smoothness_loss[dense_padding_mask[:, 1:]] = 0
smoothness_loss = (
smoothness_loss.mean() * sample_size * self.smoothness_weight
)
result = {
"losses": {
"grad_pen": grad_pen,
"code_pen": code_pen,
"smoothness": smoothness_loss,
},
"temp": self.curr_temp,
"code_ppl": code_perplexity,
"prob_ppl": prob_perplexity,
"d_steps": int(d_step),
"sample_size": sample_size,
}
suff = "_d" if d_step else "_g"
result["losses"]["dense" + suff] = loss_dense
result["losses"]["token" + suff] = loss_token
return result