Spaces:
Runtime error
Runtime error
# Copyright 2022 The OFA-Sys Team. | |
# All rights reserved. | |
# This source code is licensed under the Apache 2.0 license | |
# found in the LICENSE file in the root directory. | |
import math | |
from typing import Dict, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from fairseq import utils | |
from fairseq.incremental_decoding_utils import with_incremental_state | |
from fairseq.modules.fairseq_dropout import FairseqDropout | |
from fairseq.modules.quant_noise import quant_noise | |
from torch import Tensor, nn | |
from torch.nn import Parameter | |
class MultiheadAttention(nn.Module): | |
"""Multi-headed attention. | |
See "Attention Is All You Need" for more details. | |
""" | |
def __init__( | |
self, | |
embed_dim, | |
num_heads, | |
kdim=None, | |
vdim=None, | |
dropout=0.0, | |
bias=True, | |
add_bias_kv=False, | |
add_zero_attn=False, | |
self_attention=False, | |
encoder_decoder_attention=False, | |
q_noise=0.0, | |
qn_block_size=8, | |
scale_factor=2, | |
scale_heads=False | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.kdim = kdim if kdim is not None else embed_dim | |
self.vdim = vdim if vdim is not None else embed_dim | |
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim | |
self.num_heads = num_heads | |
self.dropout_module = FairseqDropout( | |
dropout, module_name=self.__class__.__name__ | |
) | |
self.head_dim = embed_dim // num_heads | |
assert ( | |
self.head_dim * num_heads == self.embed_dim | |
), "embed_dim must be divisible by num_heads" | |
self.scaling = float(self.head_dim * scale_factor) ** -0.5 | |
self.self_attention = self_attention | |
self.encoder_decoder_attention = encoder_decoder_attention | |
self.c_attn = nn.Parameter(torch.ones((self.num_heads,)), requires_grad=True) if scale_heads else None | |
assert not self.self_attention or self.qkv_same_dim, ( | |
"Self-attention requires query, key and " "value to be of the same size" | |
) | |
self.k_proj = quant_noise( | |
nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size | |
) | |
self.v_proj = quant_noise( | |
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size | |
) | |
self.q_proj = quant_noise( | |
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size | |
) | |
self.out_proj = quant_noise( | |
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size | |
) | |
if add_bias_kv: | |
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) | |
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) | |
else: | |
self.bias_k = self.bias_v = None | |
self.add_zero_attn = add_zero_attn | |
self.reset_parameters() | |
self.onnx_trace = False | |
def prepare_for_onnx_export_(self): | |
self.onnx_trace = True | |
def reset_parameters(self): | |
if self.qkv_same_dim: | |
# Empirically observed the convergence to be much better with | |
# the scaled initialization | |
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) | |
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) | |
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) | |
else: | |
nn.init.xavier_uniform_(self.k_proj.weight) | |
nn.init.xavier_uniform_(self.v_proj.weight) | |
nn.init.xavier_uniform_(self.q_proj.weight) | |
nn.init.xavier_uniform_(self.out_proj.weight) | |
if self.out_proj.bias is not None: | |
nn.init.constant_(self.out_proj.bias, 0.0) | |
if self.bias_k is not None: | |
nn.init.xavier_normal_(self.bias_k) | |
if self.bias_v is not None: | |
nn.init.xavier_normal_(self.bias_v) | |
def forward( | |
self, | |
query, | |
key: Optional[Tensor], | |
value: Optional[Tensor], | |
key_padding_mask: Optional[Tensor] = None, | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
need_weights: bool = True, | |
static_kv: bool = False, | |
attn_mask: Optional[Tensor] = None, | |
self_attn_mask: Optional[Tensor] = None, | |
before_softmax: bool = False, | |
need_head_weights: bool = False, | |
attn_bias: Optional[Tensor] = None, | |
prompt_kv: Optional[Tensor] = None | |
) -> Tuple[Tensor, Optional[Tensor]]: | |
"""Input shape: Time x Batch x Channel | |
Args: | |
key_padding_mask (ByteTensor, optional): mask to exclude | |
keys that are pads, of shape `(batch, src_len)`, where | |
padding elements are indicated by 1s. | |
need_weights (bool, optional): return the attention weights, | |
averaged over heads (default: False). | |
attn_mask (ByteTensor, optional): typically used to | |
implement causal attention, where the mask prevents the | |
attention from looking forward in time (default: None). | |
before_softmax (bool, optional): return the raw attention | |
weights and values before the attention softmax. | |
need_head_weights (bool, optional): return the attention | |
weights for each head. Implies *need_weights*. Default: | |
return the average attention weights over all heads. | |
""" | |
if need_head_weights: | |
need_weights = True | |
is_tpu = query.device.type == "xla" | |
tgt_len, bsz, embed_dim = query.size() | |
src_len = tgt_len | |
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" | |
assert list(query.size()) == [tgt_len, bsz, embed_dim] | |
if key is not None: | |
src_len, key_bsz, _ = key.size() | |
if not torch.jit.is_scripting(): | |
assert key_bsz == bsz | |
assert value is not None | |
assert src_len, bsz == value.shape[:2] | |
if ( | |
not self.onnx_trace | |
and not is_tpu # don't use PyTorch version on TPUs | |
and incremental_state is None | |
and not static_kv | |
# A workaround for quantization to work. Otherwise JIT compilation | |
# treats bias in linear module as method. | |
and not torch.jit.is_scripting() | |
and self_attn_mask is None | |
and attn_bias is None | |
): | |
assert key is not None and value is not None | |
return F.multi_head_attention_forward( | |
query, | |
key, | |
value, | |
self.embed_dim, | |
self.num_heads, | |
torch.empty([0]), | |
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), | |
self.bias_k, | |
self.bias_v, | |
self.add_zero_attn, | |
self.dropout_module.p, | |
self.out_proj.weight, | |
self.out_proj.bias, | |
self.training or self.dropout_module.apply_during_inference, | |
key_padding_mask, | |
need_weights, | |
attn_mask, | |
use_separate_proj_weight=True, | |
q_proj_weight=self.q_proj.weight, | |
k_proj_weight=self.k_proj.weight, | |
v_proj_weight=self.v_proj.weight, | |
) | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
if saved_state is not None and "prev_key" in saved_state: | |
# previous time steps are cached - no need to recompute | |
# key and value if they are static | |
if static_kv: | |
assert self.encoder_decoder_attention and not self.self_attention | |
key = value = None | |
else: | |
saved_state = None | |
if self.self_attention and self_attn_mask is None: | |
q = self.q_proj(query) | |
k = self.k_proj(query) | |
v = self.v_proj(query) | |
elif self.encoder_decoder_attention: | |
# encoder-decoder attention | |
q = self.q_proj(query) | |
if key is None: | |
assert value is None | |
k = v = None | |
else: | |
k = self.k_proj(key) | |
v = self.v_proj(key) | |
else: | |
assert key is not None and value is not None | |
q = self.q_proj(query) | |
k = self.k_proj(key) | |
v = self.v_proj(value) | |
q *= self.scaling | |
if self.bias_k is not None: | |
assert self.bias_v is not None | |
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) | |
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) | |
if attn_mask is not None: | |
attn_mask = torch.cat( | |
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 | |
) | |
if key_padding_mask is not None: | |
key_padding_mask = torch.cat( | |
[ | |
key_padding_mask, | |
key_padding_mask.new_zeros(key_padding_mask.size(0), 1), | |
], | |
dim=1, | |
) | |
q = ( | |
q.contiguous() | |
.view(tgt_len, bsz * self.num_heads, self.head_dim) | |
.transpose(0, 1) | |
) | |
if k is not None: | |
k = ( | |
k.contiguous() | |
.view(-1, bsz * self.num_heads, self.head_dim) | |
.transpose(0, 1) | |
) | |
if v is not None: | |
v = ( | |
v.contiguous() | |
.view(-1, bsz * self.num_heads, self.head_dim) | |
.transpose(0, 1) | |
) | |
if saved_state is not None: | |
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim) | |
if "prev_key" in saved_state: | |
_prev_key = saved_state["prev_key"] | |
assert _prev_key is not None | |
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) | |
if static_kv: | |
k = prev_key | |
else: | |
assert k is not None | |
k = torch.cat([prev_key, k], dim=1) | |
src_len = k.size(1) | |
if "prev_value" in saved_state: | |
_prev_value = saved_state["prev_value"] | |
assert _prev_value is not None | |
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) | |
if static_kv: | |
v = prev_value | |
else: | |
assert v is not None | |
v = torch.cat([prev_value, v], dim=1) | |
prev_key_padding_mask: Optional[Tensor] = None | |
if "prev_key_padding_mask" in saved_state: | |
prev_key_padding_mask = saved_state["prev_key_padding_mask"] | |
assert k is not None and v is not None | |
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( | |
key_padding_mask=key_padding_mask, | |
prev_key_padding_mask=prev_key_padding_mask, | |
batch_size=bsz, | |
src_len=k.size(1), | |
static_kv=static_kv, | |
) | |
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) | |
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) | |
saved_state["prev_key_padding_mask"] = key_padding_mask | |
# In this branch incremental_state is never None | |
assert incremental_state is not None | |
incremental_state = self._set_input_buffer(incremental_state, saved_state) | |
assert k is not None | |
assert k.size(1) == src_len | |
# This is part of a workaround to get around fork/join parallelism | |
# not supporting Optional types. | |
if key_padding_mask is not None and key_padding_mask.dim() == 0: | |
key_padding_mask = None | |
if self.add_zero_attn: | |
assert v is not None | |
src_len += 1 | |
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) | |
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) | |
if attn_mask is not None: | |
attn_mask = torch.cat( | |
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 | |
) | |
if key_padding_mask is not None: | |
key_padding_mask = torch.cat( | |
[ | |
key_padding_mask, | |
torch.zeros(key_padding_mask.size(0), 1).type_as( | |
key_padding_mask | |
), | |
], | |
dim=1, | |
) | |
if prompt_kv is not None: | |
prompt_k, prompt_v = prompt_kv.split(1) | |
prompt_k = prompt_k.squeeze(0).reshape(k.size(0), -1, k.size(2)) | |
prompt_v = prompt_v.squeeze(0).reshape(v.size(0), -1, v.size(2)) | |
k = torch.cat([prompt_k, k], dim=1) | |
v = torch.cat([prompt_v, v], dim=1) | |
if key_padding_mask is not None: | |
assert key_padding_mask.size(0) == bsz | |
assert key_padding_mask.size(1) == k.size(1) | |
attn_weights = torch.bmm(q, k.transpose(1, 2)) | |
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, k.size(1), bsz) | |
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, k.size(1)] | |
if attn_bias is not None: | |
attn_weights[:, :, -src_len:] += attn_bias[:, :, -src_len:] | |
if attn_mask is not None: | |
attn_mask = attn_mask.unsqueeze(0) | |
if self.onnx_trace: | |
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) | |
attn_weights += attn_mask | |
if self_attn_mask is not None: | |
self_attn_mask = self_attn_mask.unsqueeze(1).expand(bsz, self.num_heads, tgt_len, k.size(1)) | |
attn_weights += self_attn_mask.contiguous().view(bsz * self.num_heads, tgt_len, k.size(1)) | |
if key_padding_mask is not None: | |
# don't attend to padding symbols | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, k.size(1)) | |
if not is_tpu: | |
attn_weights = attn_weights.masked_fill( | |
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), | |
float("-inf"), | |
) | |
else: | |
attn_weights = attn_weights.transpose(0, 2) | |
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) | |
attn_weights = attn_weights.transpose(0, 2) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, k.size(1)) | |
if before_softmax: | |
return attn_weights, v | |
attn_weights_float = utils.softmax( | |
attn_weights, dim=-1, onnx_trace=self.onnx_trace | |
) | |
attn_weights = attn_weights_float.type_as(attn_weights) | |
attn_probs = self.dropout_module(attn_weights) | |
assert v is not None | |
attn = torch.bmm(attn_probs, v) | |
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] | |
if self.onnx_trace and attn.size(1) == 1: | |
# when ONNX tracing a single decoder step (sequence length == 1) | |
# the transpose is a no-op copy before view, thus unnecessary | |
attn = attn.contiguous().view(tgt_len, bsz, embed_dim) | |
else: | |
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
if self.c_attn is not None: | |
attn = attn.view(tgt_len, bsz, self.num_heads, self.head_dim) | |
attn = torch.einsum('tbhd,h->tbhd', attn, self.c_attn) | |
attn = attn.reshape(tgt_len, bsz, self.embed_dim) | |
attn = self.out_proj(attn) | |
attn_weights: Optional[Tensor] = None | |
if need_weights: | |
attn_weights = attn_weights_float.view( | |
bsz, self.num_heads, tgt_len, k.size(1) | |
).transpose(1, 0) | |
if not need_head_weights: | |
# average attention weights over heads | |
attn_weights = attn_weights.mean(dim=0) | |
return attn, attn_weights | |
def _append_prev_key_padding_mask( | |
key_padding_mask: Optional[Tensor], | |
prev_key_padding_mask: Optional[Tensor], | |
batch_size: int, | |
src_len: int, | |
static_kv: bool, | |
) -> Optional[Tensor]: | |
# saved key padding masks have shape (bsz, seq_len) | |
if prev_key_padding_mask is not None and static_kv: | |
new_key_padding_mask = prev_key_padding_mask | |
elif prev_key_padding_mask is not None and key_padding_mask is not None: | |
new_key_padding_mask = torch.cat( | |
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 | |
) | |
# During incremental decoding, as the padding token enters and | |
# leaves the frame, there will be a time when prev or current | |
# is None | |
elif prev_key_padding_mask is not None: | |
if src_len > prev_key_padding_mask.size(1): | |
filler = torch.zeros( | |
(batch_size, src_len - prev_key_padding_mask.size(1)), | |
device=prev_key_padding_mask.device, | |
) | |
new_key_padding_mask = torch.cat( | |
[prev_key_padding_mask.float(), filler.float()], dim=1 | |
) | |
else: | |
new_key_padding_mask = prev_key_padding_mask.float() | |
elif key_padding_mask is not None: | |
if src_len > key_padding_mask.size(1): | |
filler = torch.zeros( | |
(batch_size, src_len - key_padding_mask.size(1)), | |
device=key_padding_mask.device, | |
) | |
new_key_padding_mask = torch.cat( | |
[filler.float(), key_padding_mask.float()], dim=1 | |
) | |
else: | |
new_key_padding_mask = key_padding_mask.float() | |
else: | |
new_key_padding_mask = prev_key_padding_mask | |
return new_key_padding_mask | |
def reorder_incremental_state( | |
self, | |
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], | |
new_order: Tensor, | |
): | |
"""Reorder buffered internal state (for incremental generation).""" | |
input_buffer = self._get_input_buffer(incremental_state) | |
if input_buffer is not None: | |
for k in input_buffer.keys(): | |
input_buffer_k = input_buffer[k] | |
if input_buffer_k is not None: | |
if self.encoder_decoder_attention and input_buffer_k.size( | |
0 | |
) == new_order.size(0): | |
break | |
input_buffer[k] = input_buffer_k.index_select(0, new_order) | |
incremental_state = self._set_input_buffer(incremental_state, input_buffer) | |
return incremental_state | |
def _get_input_buffer( | |
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] | |
) -> Dict[str, Optional[Tensor]]: | |
result = self.get_incremental_state(incremental_state, "attn_state") | |
if result is not None: | |
return result | |
else: | |
empty_result: Dict[str, Optional[Tensor]] = {} | |
return empty_result | |
def _set_input_buffer( | |
self, | |
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], | |
buffer: Dict[str, Optional[Tensor]], | |
): | |
return self.set_incremental_state(incremental_state, "attn_state", buffer) | |
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): | |
return attn_weights | |
def upgrade_state_dict_named(self, state_dict, name): | |
prefix = name + "." if name != "" else "" | |
items_to_add = {} | |
keys_to_remove = [] | |
for k in state_dict.keys(): | |
if k.endswith(prefix + "in_proj_weight"): | |
# in_proj_weight used to be q + k + v with same dimensions | |
dim = int(state_dict[k].shape[0] / 3) | |
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] | |
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] | |
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] | |
keys_to_remove.append(k) | |
k_bias = prefix + "in_proj_bias" | |
if k_bias in state_dict.keys(): | |
dim = int(state_dict[k].shape[0] / 3) | |
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] | |
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ | |
dim : 2 * dim | |
] | |
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] | |
keys_to_remove.append(prefix + "in_proj_bias") | |
for k in keys_to_remove: | |
del state_dict[k] | |
for key, value in items_to_add.items(): | |
state_dict[key] = value | |