from __future__ import annotations import logging import os from pathlib import Path from typing import Tuple import cv2 import numpy as np import torch from PIL import Image, ImageEnhance from easyocrlite.model import CRAFT from easyocrlite.utils.download_utils import prepare_model from easyocrlite.utils.image_utils import ( adjust_result_coordinates, boxed_transform, normalize_mean_variance, resize_aspect_ratio, ) from easyocrlite.utils.detect_utils import ( extract_boxes, extract_regions_from_boxes, box_expand, greedy_merge, ) from easyocrlite.types import BoxTuple, RegionTuple import easyocrlite.utils.utils as utils logger = logging.getLogger(__name__) MODULE_PATH = ( os.environ.get("EASYOCR_MODULE_PATH") or os.environ.get("MODULE_PATH") or os.path.expanduser("~/.EasyOCR/") ) class ReaderLite(object): def __init__( self, gpu=True, model_storage_directory=None, download_enabled=True, verbose=True, quantize=True, cudnn_benchmark=False, ): self.verbose = verbose model_storage_directory = Path( model_storage_directory if model_storage_directory else MODULE_PATH + "/model" ) self.detector_path = prepare_model( model_storage_directory, download_enabled, verbose ) self.quantize = quantize self.cudnn_benchmark = cudnn_benchmark if gpu is False: self.device = "cpu" if verbose: logger.warning( "Using CPU. Note: This module is much faster with a GPU." ) elif not torch.cuda.is_available(): self.device = "cpu" if verbose: logger.warning( "CUDA not available - defaulting to CPU. Note: This module is much faster with a GPU." ) elif gpu is True: self.device = "cuda" else: self.device = gpu self.detector = CRAFT() state_dict = torch.load(self.detector_path, map_location=self.device) if list(state_dict.keys())[0].startswith("module"): state_dict = {k[7:]: v for k, v in state_dict.items()} self.detector.load_state_dict(state_dict) if self.device == "cpu": if self.quantize: try: torch.quantization.quantize_dynamic( self.detector, dtype=torch.qint8, inplace=True ) except: pass else: self.detector = torch.nn.DataParallel(self.detector).to(self.device) import torch.backends.cudnn as cudnn cudnn.benchmark = self.cudnn_benchmark self.detector.eval() def process( self, image_path: str, max_size: int = 960, expand_ratio: float = 1.0, sharp: float = 1.0, contrast: float = 1.0, text_confidence: float = 0.7, text_threshold: float = 0.4, link_threshold: float = 0.4, slope_ths: float = 0.1, ratio_ths: float = 0.5, center_ths: float = 0.5, dim_ths: float = 0.5, space_ths: float = 1.0, add_margin: float = 0.1, min_size: float = 0.01, ) -> Tuple[BoxTuple, list[np.ndarray]]: image = Image.open(image_path).convert('RGB') tensor, inverse_ratio = self.preprocess( image, max_size, expand_ratio, sharp, contrast ) scores = self.forward_net(tensor) boxes = self.detect(scores, text_confidence, text_threshold, link_threshold) image = np.array(image) region_list, box_list = self.postprocess( image, boxes, inverse_ratio, slope_ths, ratio_ths, center_ths, dim_ths, space_ths, add_margin, min_size, ) # get cropped image image_list = [] for region in region_list: x_min, x_max, y_min, y_max = region crop_img = image[y_min:y_max, x_min:x_max, :] image_list.append( ( ((x_min, y_min), (x_max, y_min), (x_max, y_max), (x_min, y_max)), crop_img, ) ) for box in box_list: transformed_img = boxed_transform(image, np.array(box, dtype="float32")) image_list.append((box, transformed_img)) # sort by top left point image_list = sorted(image_list, key=lambda x: (x[0][0][1], x[0][0][0])) return image_list def preprocess( self, image: Image.Image, max_size: int, expand_ratio: float = 1.0, sharp: float = 1.0, contrast: float = 1.0, ) -> torch.Tensor: if sharp != 1: enhancer = ImageEnhance.Sharpness(image) image = enhancer.enhance(sharp) if contrast != 1: enhancer = ImageEnhance.Contrast(image) image = enhancer.enhance(contrast) image = np.array(image) image, target_ratio = resize_aspect_ratio( image, max_size, interpolation=cv2.INTER_LINEAR, expand_ratio=expand_ratio ) inverse_ratio = 1 / target_ratio x = np.transpose(normalize_mean_variance(image), (2, 0, 1)) x = torch.tensor(np.array([x]), device=self.device) return x, inverse_ratio @torch.no_grad() def forward_net(self, tensor: torch.Tensor) -> torch.Tensor: scores, feature = self.detector(tensor) return scores[0] def detect( self, scores: torch.Tensor, text_confidence: float = 0.7, text_threshold: float = 0.4, link_threshold: float = 0.4, ) -> list[BoxTuple]: # make score and link map score_text = scores[:, :, 0].cpu().data.numpy() score_link = scores[:, :, 1].cpu().data.numpy() # extract box boxes, _ = extract_boxes( score_text, score_link, text_confidence, text_threshold, link_threshold ) return boxes def postprocess( self, image: np.ndarray, boxes: list[BoxTuple], inverse_ratio: float, slope_ths: float = 0.1, ratio_ths: float = 0.5, center_ths: float = 0.5, dim_ths: float = 0.5, space_ths: float = 1.0, add_margin: float = 0.1, min_size: int = 0, ) -> Tuple[list[RegionTuple], list[BoxTuple]]: # coordinate adjustment boxes = adjust_result_coordinates(boxes, inverse_ratio) max_y, max_x, _ = image.shape # extract region and merge region_list, box_list = extract_regions_from_boxes(boxes, slope_ths) region_list = greedy_merge( region_list, ratio_ths=ratio_ths, center_ths=center_ths, dim_ths=dim_ths, space_ths=space_ths, verbose=0 ) # add margin region_list = [ region.expand(add_margin, (max_x, max_y)).as_tuple() for region in region_list ] box_list = [box_expand(box, add_margin, (max_x, max_y)) for box in box_list] # filter by size if min_size: if min_size < 1: min_size = int(min(max_y, max_x) * min_size) region_list = [ i for i in region_list if max(i[1] - i[0], i[3] - i[2]) > min_size ] box_list = [ i for i in box_list if max(utils.diff([c[0] for c in i]), utils.diff([c[1] for c in i])) > min_size ] return region_list, box_list