# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from enum import Enum, auto import math import numpy as np from typing import Tuple, List, Optional, Dict import torch import torch.nn as nn import torch.nn.functional as F from torch import autograd from fairseq import checkpoint_utils, utils from fairseq.dataclass import FairseqDataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.modules import ( SamePad, TransposeLast, ) class SegmentationType(Enum): NONE = auto() RANDOM = auto() UNIFORM_RANDOM = auto() UNIFORM_RANDOM_JOIN = auto() JOIN = auto() @dataclass class SegmentationConfig(FairseqDataclass): type: SegmentationType = SegmentationType.NONE subsample_rate: float = 0.25 mean_pool: bool = True mean_pool_join: bool = False remove_zeros: bool = False @dataclass class Wav2vec_UConfig(FairseqDataclass): discriminator_kernel: int = 3 discriminator_dilation: int = 1 discriminator_dim: int = 256 discriminator_causal: bool = True discriminator_linear_emb: bool = False discriminator_depth: int = 1 discriminator_max_pool: bool = False discriminator_act_after_linear: bool = False discriminator_dropout: float = 0.0 discriminator_spectral_norm: bool = False discriminator_weight_norm: bool = False generator_kernel: int = 4 generator_dilation: int = 1 generator_stride: int = 1 generator_bias: bool = False generator_dropout: float = 0.0 blank_weight: float = 0 blank_mode: str = "add" blank_is_sil: bool = False no_softmax: bool = False smoothness_weight: float = 0.0 smoothing: float = 0.0 smoothing_one_sided: bool = False gradient_penalty: float = 0.0 probabilistic_grad_penalty_slicing: bool = False code_penalty: float = 0.0 gumbel: bool = False hard_gumbel: bool = True temp: Tuple[float, float, float] = (2, 0.1, 0.99995) input_dim: int = 128 segmentation: SegmentationConfig = SegmentationConfig() class Segmenter(nn.Module): cfg: SegmentationConfig def __init__(self, cfg: SegmentationConfig): super().__init__() self.cfg = cfg self.subsample_rate = cfg.subsample_rate def pre_segment(self, dense_x, dense_padding_mask): return dense_x, dense_padding_mask def logit_segment(self, logits, padding_mask): return logits, padding_mask class RandomSegmenter(Segmenter): def pre_segment(self, dense_x, dense_padding_mask): target_num = math.ceil(dense_x.size(1) * self.subsample_rate) ones = torch.ones(dense_x.shape[:-1], device=dense_x.device) indices, _ = ones.multinomial(target_num).sort(dim=-1) indices_ld = indices.unsqueeze(-1).expand(-1, -1, dense_x.size(-1)) dense_x = dense_x.gather(1, indices_ld) dense_padding_mask = dense_padding_mask.gather(1, index=indices) return dense_x, dense_padding_mask class UniformRandomSegmenter(Segmenter): def pre_segment(self, dense_x, dense_padding_mask): bsz, tsz, fsz = dense_x.shape target_num = math.ceil(tsz * self.subsample_rate) rem = tsz % target_num if rem > 0: dense_x = F.pad(dense_x, [0, 0, 0, target_num - rem]) dense_padding_mask = F.pad( dense_padding_mask, [0, target_num - rem], value=True ) dense_x = dense_x.view(bsz, target_num, -1, fsz) dense_padding_mask = dense_padding_mask.view(bsz, target_num, -1) if self.cfg.mean_pool: dense_x = dense_x.mean(dim=-2) dense_padding_mask = dense_padding_mask.all(dim=-1) else: ones = torch.ones((bsz, dense_x.size(2)), device=dense_x.device) indices = ones.multinomial(1) indices = indices.unsqueeze(-1).expand(-1, target_num, -1) indices_ld = indices.unsqueeze(-1).expand(-1, -1, -1, fsz) dense_x = dense_x.gather(2, indices_ld).reshape(bsz, -1, fsz) dense_padding_mask = dense_padding_mask.gather(2, index=indices).reshape( bsz, -1 ) return dense_x, dense_padding_mask class JoinSegmenter(Segmenter): def logit_segment(self, logits, padding_mask): preds = logits.argmax(dim=-1) if padding_mask.any(): preds[padding_mask] = -1 # mark pad uniques = [] bsz, tsz, csz = logits.shape for p in preds: uniques.append( p.cpu().unique_consecutive(return_inverse=True, return_counts=True) ) new_tsz = max(u[0].numel() for u in uniques) new_logits = logits.new_zeros(bsz, new_tsz, csz) new_pad = padding_mask.new_zeros(bsz, new_tsz) for b in range(bsz): u, idx, c = uniques[b] keep = u != -1 if self.cfg.remove_zeros: keep.logical_and_(u != 0) if self.training and not self.cfg.mean_pool_join: u[0] = 0 u[1:] = c.cumsum(0)[:-1] m = c > 1 r = torch.rand(m.sum()) o = (c[m] * r).long() u[m] += o new_logits[b, : u.numel()] = logits[b, u] else: new_logits[b].index_add_( dim=0, index=idx.to(new_logits.device), source=logits[b] ) new_logits[b, : c.numel()] /= c.unsqueeze(-1).to(new_logits.device) new_sz = keep.sum() if not keep.all(): kept_logits = new_logits[b, : c.numel()][keep] new_logits[b, :new_sz] = kept_logits if new_sz < new_tsz: pad = new_tsz - new_sz new_logits[b, -pad:] = 0 new_pad[b, -pad:] = True return new_logits, new_pad class UniformRandomJoinSegmenter(UniformRandomSegmenter, JoinSegmenter): pass SEGMENT_FACTORY = { SegmentationType.NONE: Segmenter, SegmentationType.RANDOM: RandomSegmenter, SegmentationType.UNIFORM_RANDOM: UniformRandomSegmenter, SegmentationType.UNIFORM_RANDOM_JOIN: UniformRandomJoinSegmenter, SegmentationType.JOIN: JoinSegmenter, } class Discriminator(nn.Module): def __init__(self, dim, cfg: Wav2vec_UConfig): super().__init__() inner_dim = cfg.discriminator_dim kernel = cfg.discriminator_kernel dilation = cfg.discriminator_dilation self.max_pool = cfg.discriminator_max_pool if cfg.discriminator_causal: padding = kernel - 1 else: padding = kernel // 2 def make_conv(in_d, out_d, k, p=0, has_dilation=True): conv = nn.Conv1d( in_d, out_d, kernel_size=k, padding=p, dilation=dilation if has_dilation else 1, ) if cfg.discriminator_spectral_norm: conv = nn.utils.spectral_norm(conv) elif cfg.discriminator_weight_norm: conv = nn.utils.weight_norm(conv) return conv inner_net = [ nn.Sequential( make_conv(inner_dim, inner_dim, kernel, padding), SamePad(kernel_size=kernel, causal=cfg.discriminator_causal), nn.Dropout(cfg.discriminator_dropout), nn.GELU(), ) for _ in range(cfg.discriminator_depth - 1) ] + [ make_conv(inner_dim, 1, kernel, padding, has_dilation=False), SamePad(kernel_size=kernel, causal=cfg.discriminator_causal), ] if cfg.discriminator_linear_emb: emb_net = [make_conv(dim, inner_dim, 1)] else: emb_net = [ make_conv(dim, inner_dim, kernel, padding), SamePad(kernel_size=kernel, causal=cfg.discriminator_causal), ] if cfg.discriminator_act_after_linear: emb_net.append(nn.GELU()) self.net = nn.Sequential( *emb_net, nn.Dropout(cfg.discriminator_dropout), *inner_net, ) def forward(self, x, padding_mask): x = x.transpose(1, 2) # BTC -> BCT x = self.net(x) x = x.transpose(1, 2) x_sz = x.size(1) if padding_mask is not None and padding_mask.any() and padding_mask.dim() > 1: padding_mask = padding_mask[:, : x.size(1)] x[padding_mask] = float("-inf") if self.max_pool else 0 x_sz = x_sz - padding_mask.sum(dim=-1) x = x.squeeze(-1) if self.max_pool: x, _ = x.max(dim=-1) else: x = x.sum(dim=-1) x = x / x_sz return x class Generator(nn.Module): def __init__(self, input_dim, output_dim, cfg: Wav2vec_UConfig): super().__init__() self.cfg = cfg self.output_dim = output_dim self.stride = cfg.generator_stride self.dropout = nn.Dropout(cfg.generator_dropout) padding = cfg.generator_kernel // 2 self.proj = nn.Sequential( TransposeLast(), nn.Conv1d( input_dim, output_dim, kernel_size=cfg.generator_kernel, stride=cfg.generator_stride, dilation=cfg.generator_dilation, padding=padding, bias=cfg.generator_bias, ), TransposeLast(), ) def forward(self, dense_x, tokens, dense_padding_mask): dense_x = self.dropout(dense_x) dense_x = self.proj(dense_x) if self.stride > 1: dense_padding_mask = dense_padding_mask[:, :: self.stride] if dense_padding_mask.size(1) != dense_x.size(1): new_padding = dense_padding_mask.new_zeros(dense_x.shape[:-1]) diff = new_padding.size(1) - dense_padding_mask.size(1) assert ( diff > 0 ), f"{new_padding.shape}, {dense_padding_mask.shape}, {dense_x.shape}, {diff}" if diff > 0: new_padding[:, diff:] = dense_padding_mask else: assert diff < 0 new_padding = dense_padding_mask[:, :diff] dense_padding_mask = new_padding result = {} token_x = None if tokens is not None: token_x = dense_x.new_zeros(tokens.numel(), self.output_dim) token_x.scatter_(1, tokens.view(-1, 1).long(), 1) token_x = token_x.view(tokens.shape + (self.output_dim,)) result["dense_x"] = dense_x result["token_x"] = token_x result["dense_padding_mask"] = dense_padding_mask return result @register_model("wav2vec_u", dataclass=Wav2vec_UConfig) class Wav2vec_U(BaseFairseqModel): def calc_gradient_penalty(self, real_data, fake_data): b_size = min(real_data.size(0), fake_data.size(0)) t_size = min(real_data.size(1), fake_data.size(1)) if self.cfg.probabilistic_grad_penalty_slicing: def get_slice(data, dim, target_size): size = data.size(dim) diff = size - target_size if diff <= 0: return data start = np.random.randint(0, diff + 1) return data.narrow(dim=dim, start=start, length=target_size) real_data = get_slice(real_data, 0, b_size) real_data = get_slice(real_data, 1, t_size) fake_data = get_slice(fake_data, 0, b_size) fake_data = get_slice(fake_data, 1, t_size) else: real_data = real_data[:b_size, :t_size] fake_data = fake_data[:b_size, :t_size] alpha = torch.rand(real_data.size(0), 1, 1) alpha = alpha.expand(real_data.size()) alpha = alpha.to(real_data.device) interpolates = alpha * real_data + ((1 - alpha) * fake_data) disc_interpolates = self.discriminator(interpolates, None) gradients = autograd.grad( outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones(disc_interpolates.size(), device=real_data.device), create_graph=True, retain_graph=True, only_inputs=True, )[0] gradient_penalty = (gradients.norm(2, dim=1) - 1) ** 2 return gradient_penalty def set_num_updates(self, num_updates): super().set_num_updates(num_updates) self.update_num = num_updates self.curr_temp = max( self.max_temp * self.temp_decay ** num_updates, self.min_temp ) def discrim_step(self, num_updates): return num_updates % 2 == 1 def get_groups_for_update(self, num_updates): return "discriminator" if self.discrim_step(num_updates) else "generator" def __init__(self, cfg: Wav2vec_UConfig, target_dict): super().__init__() self.cfg = cfg self.zero_index = target_dict.index("") if "" in target_dict else 0 self.smoothness_weight = cfg.smoothness_weight output_size = len(target_dict) self.pad = target_dict.pad() self.eos = target_dict.eos() self.smoothing = cfg.smoothing self.smoothing_one_sided = cfg.smoothing_one_sided self.no_softmax = cfg.no_softmax self.gumbel = cfg.gumbel self.hard_gumbel = cfg.hard_gumbel self.last_acc = None self.gradient_penalty = cfg.gradient_penalty self.code_penalty = cfg.code_penalty self.blank_weight = cfg.blank_weight self.blank_mode = cfg.blank_mode self.blank_index = target_dict.index("") if cfg.blank_is_sil else 0 assert self.blank_index != target_dict.unk() self.discriminator = Discriminator(output_size, cfg) for p in self.discriminator.parameters(): p.param_group = "discriminator" self.pca_A = self.pca_b = None d = cfg.input_dim self.segmenter = SEGMENT_FACTORY[cfg.segmentation.type](cfg.segmentation) self.generator = Generator(d, output_size, cfg) for p in self.generator.parameters(): p.param_group = "generator" for p in self.segmenter.parameters(): p.param_group = "generator" self.max_temp, self.min_temp, self.temp_decay = cfg.temp self.curr_temp = self.max_temp self.update_num = 0 @classmethod def build_model(cls, cfg, task): return cls(cfg, task.target_dictionary) def get_logits( self, net_output: Optional[Dict[str, List[Optional[torch.Tensor]]]], normalize: bool = False, ): logits = net_output["logits"] if self.blank_weight != 0: if self.blank_mode == "add": logits[..., self.blank_index] += self.blank_weight elif self.blank_mode == "set": logits[..., self.blank_index] = self.blank_weight else: raise Exception(f"invalid blank mode {self.blank_mode}") padding = net_output["padding_mask"] if padding.any(): logits[padding] = float("-inf") logits[padding][..., self.blank_index] = float("inf") if normalize: logits = utils.log_softmax(logits.float(), dim=-1) return logits.transpose(0, 1) def get_normalized_probs( self, net_output: Tuple[ torch.Tensor, Optional[Dict[str, List[Optional[torch.Tensor]]]] ], log_probs: bool, sample: Optional[Dict[str, torch.Tensor]] = None, ): logits = self.get_logits(net_output) probs = super().get_normalized_probs(logits, log_probs, sample) # BTC -> TBC for ctc probs = probs.transpose(0, 1) return probs def normalize(self, dense_x): bsz, tsz, csz = dense_x.shape if dense_x.numel() == 0: raise Exception(dense_x.shape) _, k = dense_x.max(-1) hard_x = ( dense_x.new_zeros(bsz * tsz, csz) .scatter_(-1, k.view(-1, 1), 1.0) .view(-1, csz) ) hard_probs = torch.mean(hard_x.float(), dim=0) code_perplexity = torch.exp( -torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1) ) avg_probs = torch.softmax(dense_x.reshape(-1, csz).float(), dim=-1).mean(dim=0) prob_perplexity = torch.exp( -torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1) ) if not self.no_softmax: if self.training and self.gumbel: dense_x = F.gumbel_softmax( dense_x.float(), tau=self.curr_temp, hard=self.hard_gumbel ).type_as(dense_x) else: dense_x = dense_x.softmax(-1) return dense_x, code_perplexity, prob_perplexity def forward( self, features, padding_mask, random_label=None, dense_x_only=False, segment=True, ): if segment: features, padding_mask = self.segmenter.pre_segment(features, padding_mask) orig_size = features.size(0) * features.size(1) - padding_mask.sum() gen_result = self.generator(features, random_label, padding_mask) orig_dense_x, token_x = gen_result["dense_x"], gen_result["token_x"] orig_dense_padding_mask = gen_result["dense_padding_mask"] if segment: dense_x, dense_padding_mask = self.segmenter.logit_segment( orig_dense_x, orig_dense_padding_mask ) else: dense_x = orig_dense_x dense_padding_mask = orig_dense_padding_mask dense_logits = dense_x prob_perplexity = None code_perplexity = None if not (self.no_softmax and dense_x_only): dense_x, code_perplexity, prob_perplexity = self.normalize(dense_logits) if dense_x_only or self.discriminator is None: return { "logits": dense_x, "padding_mask": dense_padding_mask, } token_padding_mask = random_label == self.pad dense_y = self.discriminator(dense_x, dense_padding_mask) token_y = self.discriminator(token_x, token_padding_mask) sample_size = features.size(0) d_step = self.discrim_step(self.update_num) fake_smooth = self.smoothing real_smooth = self.smoothing if self.smoothing_one_sided: fake_smooth = 0 zero_loss = None smoothness_loss = None code_pen = None if d_step: loss_dense = F.binary_cross_entropy_with_logits( dense_y, dense_y.new_ones(dense_y.shape) - fake_smooth, reduction="sum", ) loss_token = F.binary_cross_entropy_with_logits( token_y, token_y.new_zeros(token_y.shape) + real_smooth, reduction="sum", ) if self.training and self.gradient_penalty > 0: grad_pen = self.calc_gradient_penalty(token_x, dense_x) grad_pen = grad_pen.sum() * self.gradient_penalty else: grad_pen = None else: grad_pen = None loss_token = None loss_dense = F.binary_cross_entropy_with_logits( dense_y, dense_y.new_zeros(dense_y.shape) + fake_smooth, reduction="sum", ) num_vars = dense_x.size(-1) if prob_perplexity is not None: code_pen = (num_vars - prob_perplexity) / num_vars code_pen = code_pen * sample_size * self.code_penalty if self.smoothness_weight > 0: smoothness_loss = F.mse_loss( dense_logits[:, :-1], dense_logits[:, 1:], reduction="none" ) smoothness_loss[dense_padding_mask[:, 1:]] = 0 smoothness_loss = ( smoothness_loss.mean() * sample_size * self.smoothness_weight ) result = { "losses": { "grad_pen": grad_pen, "code_pen": code_pen, "smoothness": smoothness_loss, }, "temp": self.curr_temp, "code_ppl": code_perplexity, "prob_ppl": prob_perplexity, "d_steps": int(d_step), "sample_size": sample_size, } suff = "_d" if d_step else "_g" result["losses"]["dense" + suff] = loss_dense result["losses"]["token" + suff] = loss_token return result