File size: 933 Bytes
6884041
d0b5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4d6ae
 
d0b5735
 
6884041
 
d0b5735
6884041
d0b5735
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image

# 加载模型和处理器
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")

def generate_caption(image):
    # 将图片处理为模型输入格式
    inputs = processor(image, return_tensors="pt")
    # 生成描述
    out = model.generate(**inputs)
    # 解码生成的文本
    caption = processor.decode(out[0], skip_special_tokens=True)
    return caption

# 创建Gradio界面
interface = gr.Interface(
    fn=generate_caption,
    inputs=gr.Image(type="pil"),
    outputs=gr.Textbox(),
    title="Image Captioning with BLIP",
    description="上传一张图片,使用Salesforce的BLIP模型生成描述。",
)

# 运行应用
if __name__ == "__main__":
    interface.launch()