Create backup.txt
Browse files- backup.txt +27 -0
backup.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# 加载BLIP模型和处理器
|
6 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
7 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
8 |
+
|
9 |
+
st.title("图像描述生成器")
|
10 |
+
st.write("使用摄像头拍照并生成图像的描述。")
|
11 |
+
|
12 |
+
# 使用Streamlit的camera_input来获取用户摄像头输入
|
13 |
+
image_data = st.camera_input("请使用摄像头拍照")
|
14 |
+
|
15 |
+
if image_data is not None:
|
16 |
+
# 将图像数据转换为PIL图像
|
17 |
+
image = Image.open(image_data)
|
18 |
+
|
19 |
+
# 显示拍摄的图像
|
20 |
+
st.image(image, caption="拍摄的图像", use_column_width=True)
|
21 |
+
|
22 |
+
# 生成图像描述
|
23 |
+
inputs = processor(image, return_tensors="pt")
|
24 |
+
out = model.generate(**inputs)
|
25 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
st.write(f"图像描述: {caption}")
|