import streamlit as st from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image from gtts import gTTS import tempfile import os # 加载BLIP模型和处理器 processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") st.title("图像描述生成器") st.write("使用摄像头拍照并生成图像的描述。") # 使用Streamlit的camera_input来获取用户摄像头输入 image_data = st.camera_input("请使用摄像头拍照") if image_data is not None: # 将图像数据转换为PIL图像 image = Image.open(image_data) # 显示拍摄的图像 st.image(image, caption="拍摄的图像", use_column_width=True) # 生成图像描述 inputs = processor(image, return_tensors="pt") out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) st.write(f"图像描述: {caption}") # 生成语音 tts = gTTS(text=caption, lang='en') # 创建临时文件来保存音频 with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp: tts.save(fp.name) audio_file = fp.name # 在Streamlit中播放音频 st.audio(audio_file) # 删除临时文件 os.remove(audio_file)