File size: 1,403 Bytes
56a97f7
148a19e
c250292
56a97f7
148a19e
 
 
 
56a97f7
148a19e
 
 
6321605
56a97f7
f6edc5a
fb4e476
2061b93
56a97f7
1e93dc5
2061b93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from PIL import Image
import torch
import gradio as gr

face2paint = torch.hub.load(
    'bryandlee/animegan2-pytorch:main', 'face2paint', 
    size=512, device="cuda"
)

def inference(img):
    out = face2paint(model, img)
    return out
      
  
title = "Animeganv2"
description = "Gradio demo for AnimeGanv2 Face Portrait v2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below"
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a> | <a href='https://github.com/Kazuhito00/AnimeGANv2-ONNX-Sample' target='_blank'>Github Repo ONNX</a></p><p style='text-align: center'>samples from repo: <img src='https://user-images.githubusercontent.com/26464535/129888683-98bb6283-7bb8-4d1a-a04a-e795f5858dcf.gif' alt='animation'/> <img src='https://user-images.githubusercontent.com/26464535/137619176-59620b59-4e20-4d98-9559-a424f86b7f24.jpg' alt='animation'/></p>"

examples=[['groot.jpeg'],['bill.png'],['tony.png'],['elon.png'],['IU.png'],['billie.png'],['will.png'],['beyonce.jpeg'],['gongyoo.jpeg']]
gr.Interface(inference, gr.inputs.Image(type="pil"), gr.outputs.Image(type="pil"),title=title,description=description,article=article,enable_queue=True,examples=examples).launch()