Spaces:
Running
on
T4
Running
on
T4
File size: 1,403 Bytes
56a97f7 148a19e c250292 56a97f7 148a19e 56a97f7 148a19e 6321605 56a97f7 f6edc5a fb4e476 2061b93 56a97f7 1e93dc5 2061b93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
from PIL import Image
import torch
import gradio as gr
face2paint = torch.hub.load(
'bryandlee/animegan2-pytorch:main', 'face2paint',
size=512, device="cuda"
)
def inference(img):
out = face2paint(model, img)
return out
title = "Animeganv2"
description = "Gradio demo for AnimeGanv2 Face Portrait v2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below"
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a> | <a href='https://github.com/Kazuhito00/AnimeGANv2-ONNX-Sample' target='_blank'>Github Repo ONNX</a></p><p style='text-align: center'>samples from repo: <img src='https://user-images.githubusercontent.com/26464535/129888683-98bb6283-7bb8-4d1a-a04a-e795f5858dcf.gif' alt='animation'/> <img src='https://user-images.githubusercontent.com/26464535/137619176-59620b59-4e20-4d98-9559-a424f86b7f24.jpg' alt='animation'/></p>"
examples=[['groot.jpeg'],['bill.png'],['tony.png'],['elon.png'],['IU.png'],['billie.png'],['will.png'],['beyonce.jpeg'],['gongyoo.jpeg']]
gr.Interface(inference, gr.inputs.Image(type="pil"), gr.outputs.Image(type="pil"),title=title,description=description,article=article,enable_queue=True,examples=examples).launch() |