Spaces:
Running
on
T4
Running
on
T4
import os | |
os.system("git clone https://github.com/bryandlee/animegan2-pytorch") | |
os.system("gdown https://drive.google.com/uc?id=1WK5Mdt6mwlcsqCZMHkCUSDJxN1UyFi0-") | |
os.system("gdown https://drive.google.com/uc?id=18H3iK09_d54qEDoWIc82SyWB2xun4gjU") | |
import sys | |
sys.path.append("animegan2-pytorch") | |
import torch | |
torch.set_grad_enabled(False) | |
from model import Generator | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = Generator().eval().to(device) | |
model.load_state_dict(torch.load("face_paint_512_v2_0.pt")) | |
from PIL import Image | |
from torchvision.transforms.functional import to_tensor, to_pil_image | |
import gradio as gr | |
def face2paint( | |
img: Image.Image, | |
size: int, | |
side_by_side: bool = False, | |
) -> Image.Image: | |
input = to_tensor(img).unsqueeze(0) * 2 - 1 | |
output = model(input.to(device)).cpu()[0] | |
if side_by_side: | |
output = torch.cat([input[0], output], dim=2) | |
output = (output * 0.5 + 0.5).clip(0, 1) | |
return to_pil_image(output) | |
import os | |
import collections | |
from typing import Union, List | |
import numpy as np | |
from PIL import Image | |
import PIL.Image | |
import PIL.ImageFile | |
import numpy as np | |
import scipy.ndimage | |
import requests | |
def inference(img): | |
out = face2paint(img, 512) | |
return out | |
title = "Animeganv2" | |
description = "Gradio demo for AnimeGanv2 Face Portrait v2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below" | |
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo</a></p><p style='text-align: center'>samples from repo: <img src='samples.jpeg' alt='animation'/></p>" | |
examples=[['groot.jpeg'],['bill.png'],['tony.png'],['elon.png'],['IU.png'],['billie.png'],['will.png']] | |
gr.Interface(inference, gr.inputs.Image(type="pil",shape=(512,512)), gr.outputs.Image(type="pil"),title=title,description=description,article=article,examples=examples,enable_queue=True).launch() | |