import os os.system("git clone https://github.com/bryandlee/animegan2-pytorch") os.system("gdown https://drive.google.com/uc?id=1WK5Mdt6mwlcsqCZMHkCUSDJxN1UyFi0-") os.system("gdown https://drive.google.com/uc?id=18H3iK09_d54qEDoWIc82SyWB2xun4gjU") import sys sys.path.append("animegan2-pytorch") import torch torch.set_grad_enabled(False) from model import Generator device = "cpu" model = Generator().eval().to(device) model.load_state_dict(torch.load("face_paint_512_v2_0.pt")) from PIL import Image, ImageOps from torchvision.transforms.functional import to_tensor, to_pil_image import gradio as gr def face2paint( img: Image.Image, size: int, side_by_side: bool = False, ) -> Image.Image: input = to_tensor(img).unsqueeze(0) * 2 - 1 output = model(input.to(device)).cpu()[0] if side_by_side: output = torch.cat([input[0], output], dim=2) output = (output * 0.5 + 0.5).clip(0, 1) return to_pil_image(output) import os import collections from typing import Union, List import numpy as np from PIL import Image import PIL.Image import PIL.ImageFile import numpy as np import scipy.ndimage import requests def inference(image): img = ImageOps.contain(image, (512,512)) out = face2paint(img, 512) return out title = "Animeganv2" description = "Gradio demo for AnimeGanv2 Face Portrait v2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

Github Repo

" examples=[['groot.jpeg']] gr.Interface(inference, gr.inputs.Image(type="pil"), gr.outputs.Image(type="pil"),title=title,description=description,article=article,examples=examples,enable_queue=True).launch()