File size: 6,953 Bytes
0145b71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import os

import cv2
import numpy as np
import torch

from model import Generator
from psp_encoder.psp_encoders import PSPEncoder
from utils import ten2cv, cv2ten

import glob
from tqdm import tqdm
import random


seed = 0

random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)


def sigmoid(x, w=1):
    return 1. / (1 + np.exp(-w * x))


def get_alphas(start=-5, end=5, step=0.5, len_tail=10):
    return [0] + [sigmoid(alpha) for alpha in np.arange(start, end, step)] + [1] * len_tail


def slide(entries, margin=32):
    """Returns a sliding reference window.
    Args:
        entries: a list containing two reference images, x_prev and x_next,
                 both of which has a shape (1, 3, H, W)
    Returns:
        canvas: output slide of shape (num_frames, 3, H*2, W+margin)
    """
    _, C, H, W = entries[0].shape
    alphas = get_alphas()
    T = len(alphas) # number of frames

    canvas = - torch.ones((T, C, H*2, W + margin))
    merged = torch.cat(entries, dim=2)  # (1, 3, H*2, W)
    for t, alpha in enumerate(alphas):
        top = int(H * (1 - alpha))  # top, bottom for canvas
        bottom = H * 2
        m_top = 0  # top, bottom for merged
        m_bottom = 2 * H - top
        canvas[t, :, top:bottom, :W] = merged[:, :, m_top:m_bottom, :]
    return canvas


def slide_one_window(entries, margin=32):
    """Returns a sliding reference window.
    Args:
        entries: a list containing two reference images, x_prev and x_next,
                 both of which has a shape (1, 3, H, W)
    Returns:
        canvas: output slide of shape (num_frames, 3, H, W+margin)
    """
    _, C, H, W = entries[0].shape
    device = entries[0].device
    alphas = get_alphas()
    T = len(alphas) # number of frames

    canvas = - torch.ones((T, C, H, W + margin)).to(device)
    merged = torch.cat(entries, dim=2)  # (1, 3, H*2, W)
    for t, alpha in enumerate(alphas):
        m_top = int(H * alpha)  # top, bottom for merged
        m_bottom = m_top + H
        canvas[t, :, :, :W] = merged[:, :, m_top:m_bottom, :]
    return canvas


def tensor2ndarray255(images):
    images = torch.clamp(images * 0.5 + 0.5, 0, 1)
    return (images.cpu().numpy().transpose(0, 2, 3, 1) * 255).astype(np.uint8)


@torch.no_grad()
def interpolate(args, g, sample_in, sample_style_prev, sample_style_next):
    ''' returns T x C x H x W '''
    frames_ten = []
    alphas = get_alphas()

    for alpha in alphas:
        sample_style = torch.lerp(sample_style_prev, sample_style_next, alpha)
        frame_ten, _ = g([sample_in], z_embed=sample_style, add_weight_index=args.add_weight_index,
                               input_is_latent=True, return_latents=False, randomize_noise=False)
        frames_ten.append(frame_ten)
    frames_ten = torch.cat(frames_ten)
    return frames_ten


@torch.no_grad()
def video_ref(args, g, psp_encoder, img_in_ten, img_style_tens):
    video = []
    sample_in = psp_encoder(img_in_ten)

    img_style_ten_prev, sample_style_prev = None, None

    for idx in tqdm(range(len(img_style_tens))):
        img_style_ten_next = img_style_tens[idx]
        sample_style_next = g_ema.get_z_embed(img_style_ten_next)
        if img_style_ten_prev is None:
            img_style_ten_prev, sample_style_prev = img_style_ten_next, sample_style_next
            continue

        interpolated = interpolate(args, g, sample_in, sample_style_prev, sample_style_next)
        entries = [img_style_ten_prev, img_style_ten_next]
        slided = slide_one_window(entries, margin=0)     # [T, C, H, W)
        frames = torch.cat([img_in_ten.expand_as(interpolated), slided, interpolated], dim=3).cpu()   # [T, C, H, W*3)
        video.append(frames)
        img_style_ten_prev, sample_style_prev = img_style_ten_next, sample_style_next

    # append last frame 10 time
    for _ in range(10):
        video.append(frames[-1:])
    video = tensor2ndarray255(torch.cat(video))   # [T, H, W*3, C)

    return video


def save_video(fname, images, output_fps=30):
    print('save video to: %s' % fname)

    assert isinstance(images, np.ndarray), "images should be np.array: NHWC"
    num_frames, height, width, channels = images.shape

    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    videoWriter = cv2.VideoWriter(fname, fourcc, output_fps, (width, height))

    for idx in tqdm(range(num_frames)):
        frame = images[idx][:, :, ::-1]  # [H, W*3, C)
        videoWriter.write(frame)

    videoWriter.release()


if __name__ == '__main__':
    device = 'cuda'

    parser = argparse.ArgumentParser()

    parser.add_argument('--size', type=int, default=1024)

    parser.add_argument('--ckpt', type=str, default='', help='path to BlendGAN checkpoint')
    parser.add_argument('--psp_encoder_ckpt', type=str, default='', help='path to psp_encoder checkpoint')

    parser.add_argument('--style_img_path', type=str, default=None, help='path to style image')
    parser.add_argument('--input_img_path', type=str, default=None, help='path to input image')
    parser.add_argument('--add_weight_index', type=int, default=7)

    parser.add_argument('--channel_multiplier', type=int, default=2)
    parser.add_argument('--outdir', type=str, default="")

    args = parser.parse_args()

    outdir = args.outdir
    if not os.path.exists(outdir):
        os.makedirs(outdir, exist_ok=True)

    args.latent = 512
    args.n_mlp = 8

    checkpoint = torch.load(args.ckpt)
    model_dict = checkpoint['g_ema']
    print('ckpt: ', args.ckpt)

    g_ema = Generator(
        args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
    ).to(device)
    g_ema.load_state_dict(model_dict)
    g_ema.eval()

    psp_encoder = PSPEncoder(args.psp_encoder_ckpt, output_size=args.size).to(device)
    psp_encoder.eval()

    input_img_paths = sorted(glob.glob(os.path.join(args.input_img_path, '*.*')))
    style_img_paths = sorted(glob.glob(os.path.join(args.style_img_path, '*.*')))[:]

    for input_img_path in input_img_paths:
        print('process: %s' % input_img_path)

        name_in = os.path.splitext(os.path.basename(input_img_path))[0]
        img_in = cv2.imread(input_img_path, 1)
        img_in = cv2.resize(img_in, (args.size, args.size))
        img_in_ten = cv2ten(img_in, device)

        img_style_tens = []

        style_img_path_rand = random.choices(style_img_paths, k=8)
        for style_img_path in style_img_path_rand:
            name_style = os.path.splitext(os.path.basename(style_img_path))[0]
            img_style = cv2.imread(style_img_path, 1)
            img_style = cv2.resize(img_style, (args.size, args.size))
            img_style_ten = cv2ten(img_style, device)

            img_style_tens.append(img_style_ten)

        fname = f'{args.outdir}/{name_in}.mp4'
        video = video_ref(args, g_ema, psp_encoder, img_in_ten, img_style_tens)

        save_video(fname, video, output_fps=30)

    print('Done!')