File size: 1,518 Bytes
7e51154 455bb17 4b10e67 0699239 c885e53 b6679b7 1d11e4b c885e53 968fdf8 ccfbba4 7e51154 4054722 f77392c 4054722 dce67b1 c885e53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
import os
import gradio as gr
from PIL import Image
def inference(content, style):
content.save('content.png')
style.save('style.png')
os.system("""python style_transfer_folder.py --size 1024 --ckpt ./blendgan.pt --psp_encoder_ckpt ./psp_encoder.pt --style_img_path style.png --input_img_path content.png""")
return "out.jpg"
title = "BlendGAN"
description = "Gradio Demo for BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation. To use it, simply upload your images, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2110.11728' target='_blank'>BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation</a> | <a href='https://github.com/onion-liu/BlendGAN' target='_blank'>Github Repo</a></p><p style='text-align: center'>samples from repo: <img src='https://user-images.githubusercontent.com/6346064/142623312-3e6f09aa-ce88-465c-b956-a8b4db95b4da.gif' alt='animation'/> <img src='https://user-images.githubusercontent.com/6346064/142621044-086cde48-8604-467b-8c43-8768b6670ec2.gif' alt='animation'/></p>"
examples=[['000001.png','100001.png']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Image(type="pil")], gr.outputs.Image(type="file"),title=title,description=description,article=article,enable_queue=True,examples=examples,allow_flagging=False).launch() |