Spaces:
Runtime error
Runtime error
AK391
commited on
Commit
·
159f437
1
Parent(s):
82a3407
files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- configs/Base-C2_L_R5021k_640b64_4x.yaml +82 -0
- configs/Base-DeformDETR_L_R50_4x.yaml +59 -0
- configs/Base_OVCOCO_C4_1x.yaml +31 -0
- configs/BoxSup-C2_LCOCO_CLIP_SwinB_896b32_4x.yaml +19 -0
- configs/BoxSup-C2_L_CLIP_R5021k_640b64_4x.yaml +4 -0
- configs/BoxSup-C2_L_CLIP_SwinB_896b32_4x.yaml +17 -0
- configs/BoxSup-C2_Lbase_CLIP_R5021k_640b64_4x.yaml +6 -0
- configs/BoxSup-C2_Lbase_CLIP_SwinB_896b32_4x.yaml +19 -0
- configs/BoxSup-DeformDETR_L_R50_2x.yaml +3 -0
- configs/BoxSup-DeformDETR_L_R50_4x.yaml +1 -0
- configs/BoxSup_OVCOCO_CLIP_R50_1x.yaml +1 -0
- configs/Detic_DeformDETR_LI_R50_4x_ft4x.yaml +22 -0
- configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml +43 -0
- configs/Detic_LI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml +43 -0
- configs/Detic_LI_CLIP_R5021k_640b64_4x_ft4x_max-size.yaml +27 -0
- configs/Detic_LI_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml +33 -0
- configs/Detic_LbaseCCcapimg_CLIP_R5021k_640b64_4x_ft4x_max-size.yaml +30 -0
- configs/Detic_LbaseCCimg_CLIP_R5021k_640b64_4x_ft4x_max-size.yaml +27 -0
- configs/Detic_LbaseI_CLIP_R5021k_640b64_4x_ft4x_max-size.yaml +27 -0
- configs/Detic_LbaseI_CLIP_R5021k_640b64_4x_ft4x_predicted.yaml +27 -0
- configs/Detic_LbaseI_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml +33 -0
- configs/Detic_OVCOCO_CLIP_R50_1x_caption.yaml +33 -0
- configs/Detic_OVCOCO_CLIP_R50_1x_max-size.yaml +30 -0
- configs/Detic_OVCOCO_CLIP_R50_1x_max-size_caption.yaml +35 -0
- datasets/.DS_Store +0 -0
- datasets/README.md +207 -0
- datasets/metadata/Objects365_names_fix.csv +365 -0
- datasets/metadata/coco_clip_a+cname.npy +0 -0
- datasets/metadata/lvis_v1_clip_a+cname.npy +0 -0
- datasets/metadata/lvis_v1_train_cat_info.json +0 -0
- datasets/metadata/o365_clip_a+cnamefix.npy +0 -0
- datasets/metadata/oid_clip_a+cname.npy +0 -0
- demo.py +204 -0
- detic/__init__.py +19 -0
- detic/config.py +131 -0
- detic/custom_solver.py +78 -0
- detic/data/custom_build_augmentation.py +51 -0
- detic/data/custom_dataset_dataloader.py +331 -0
- detic/data/custom_dataset_mapper.py +280 -0
- detic/data/datasets/cc.py +23 -0
- detic/data/datasets/coco_zeroshot.py +121 -0
- detic/data/datasets/imagenet.py +41 -0
- detic/data/datasets/lvis_22k_categories.py +0 -0
- detic/data/datasets/lvis_v1.py +155 -0
- detic/data/datasets/objects365.py +770 -0
- detic/data/datasets/oid.py +535 -0
- detic/data/datasets/register_oid.py +122 -0
- detic/data/tar_dataset.py +138 -0
- detic/data/transforms/custom_augmentation_impl.py +60 -0
- detic/data/transforms/custom_transform.py +114 -0
configs/Base-C2_L_R5021k_640b64_4x.yaml
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "CustomRCNN"
|
3 |
+
MASK_ON: True
|
4 |
+
PROPOSAL_GENERATOR:
|
5 |
+
NAME: "CenterNet"
|
6 |
+
WEIGHTS: "models/resnet50_miil_21k.pkl"
|
7 |
+
BACKBONE:
|
8 |
+
NAME: build_p67_timm_fpn_backbone
|
9 |
+
TIMM:
|
10 |
+
BASE_NAME: resnet50_in21k
|
11 |
+
FPN:
|
12 |
+
IN_FEATURES: ["layer3", "layer4", "layer5"]
|
13 |
+
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
14 |
+
PIXEL_STD: [58.395, 57.12, 57.375]
|
15 |
+
ROI_HEADS:
|
16 |
+
NAME: DeticCascadeROIHeads
|
17 |
+
IN_FEATURES: ["p3", "p4", "p5"]
|
18 |
+
IOU_THRESHOLDS: [0.6]
|
19 |
+
NUM_CLASSES: 1203
|
20 |
+
SCORE_THRESH_TEST: 0.02
|
21 |
+
NMS_THRESH_TEST: 0.5
|
22 |
+
ROI_BOX_CASCADE_HEAD:
|
23 |
+
IOUS: [0.6, 0.7, 0.8]
|
24 |
+
ROI_BOX_HEAD:
|
25 |
+
NAME: "FastRCNNConvFCHead"
|
26 |
+
NUM_FC: 2
|
27 |
+
POOLER_RESOLUTION: 7
|
28 |
+
CLS_AGNOSTIC_BBOX_REG: True
|
29 |
+
MULT_PROPOSAL_SCORE: True
|
30 |
+
|
31 |
+
USE_SIGMOID_CE: True
|
32 |
+
USE_FED_LOSS: True
|
33 |
+
ROI_MASK_HEAD:
|
34 |
+
NAME: "MaskRCNNConvUpsampleHead"
|
35 |
+
NUM_CONV: 4
|
36 |
+
POOLER_RESOLUTION: 14
|
37 |
+
CLS_AGNOSTIC_MASK: True
|
38 |
+
CENTERNET:
|
39 |
+
NUM_CLASSES: 1203
|
40 |
+
REG_WEIGHT: 1.
|
41 |
+
NOT_NORM_REG: True
|
42 |
+
ONLY_PROPOSAL: True
|
43 |
+
WITH_AGN_HM: True
|
44 |
+
INFERENCE_TH: 0.0001
|
45 |
+
PRE_NMS_TOPK_TRAIN: 4000
|
46 |
+
POST_NMS_TOPK_TRAIN: 2000
|
47 |
+
PRE_NMS_TOPK_TEST: 1000
|
48 |
+
POST_NMS_TOPK_TEST: 256
|
49 |
+
NMS_TH_TRAIN: 0.9
|
50 |
+
NMS_TH_TEST: 0.9
|
51 |
+
POS_WEIGHT: 0.5
|
52 |
+
NEG_WEIGHT: 0.5
|
53 |
+
IGNORE_HIGH_FP: 0.85
|
54 |
+
DATASETS:
|
55 |
+
TRAIN: ("lvis_v1_train",)
|
56 |
+
TEST: ("lvis_v1_val",)
|
57 |
+
DATALOADER:
|
58 |
+
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
59 |
+
REPEAT_THRESHOLD: 0.001
|
60 |
+
NUM_WORKERS: 8
|
61 |
+
TEST:
|
62 |
+
DETECTIONS_PER_IMAGE: 300
|
63 |
+
SOLVER:
|
64 |
+
LR_SCHEDULER_NAME: "WarmupCosineLR"
|
65 |
+
CHECKPOINT_PERIOD: 1000000000
|
66 |
+
WARMUP_ITERS: 10000
|
67 |
+
WARMUP_FACTOR: 0.0001
|
68 |
+
USE_CUSTOM_SOLVER: True
|
69 |
+
OPTIMIZER: "ADAMW"
|
70 |
+
MAX_ITER: 90000
|
71 |
+
IMS_PER_BATCH: 64
|
72 |
+
BASE_LR: 0.0002
|
73 |
+
CLIP_GRADIENTS:
|
74 |
+
ENABLED: True
|
75 |
+
INPUT:
|
76 |
+
FORMAT: RGB
|
77 |
+
CUSTOM_AUG: EfficientDetResizeCrop
|
78 |
+
TRAIN_SIZE: 640
|
79 |
+
OUTPUT_DIR: "./output/Detic/auto"
|
80 |
+
EVAL_PROPOSAL_AR: False
|
81 |
+
VERSION: 2
|
82 |
+
FP16: True
|
configs/Base-DeformDETR_L_R50_4x.yaml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "DeformableDetr"
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/torchvision/R-50.pkl"
|
4 |
+
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
5 |
+
PIXEL_STD: [58.395, 57.120, 57.375]
|
6 |
+
MASK_ON: False
|
7 |
+
RESNETS:
|
8 |
+
DEPTH: 50
|
9 |
+
STRIDE_IN_1X1: False
|
10 |
+
OUT_FEATURES: ["res3", "res4", "res5"]
|
11 |
+
DETR:
|
12 |
+
CLS_WEIGHT: 2.0
|
13 |
+
GIOU_WEIGHT: 2.0
|
14 |
+
L1_WEIGHT: 5.0
|
15 |
+
NUM_OBJECT_QUERIES: 300
|
16 |
+
DIM_FEEDFORWARD: 1024
|
17 |
+
WITH_BOX_REFINE: True
|
18 |
+
TWO_STAGE: True
|
19 |
+
NUM_CLASSES: 1203
|
20 |
+
USE_FED_LOSS: True
|
21 |
+
DATASETS:
|
22 |
+
TRAIN: ("lvis_v1_train",)
|
23 |
+
TEST: ("lvis_v1_val",)
|
24 |
+
SOLVER:
|
25 |
+
CHECKPOINT_PERIOD: 10000000
|
26 |
+
USE_CUSTOM_SOLVER: True
|
27 |
+
IMS_PER_BATCH: 32
|
28 |
+
BASE_LR: 0.0002
|
29 |
+
STEPS: (150000,)
|
30 |
+
MAX_ITER: 180000
|
31 |
+
WARMUP_FACTOR: 1.0
|
32 |
+
WARMUP_ITERS: 10
|
33 |
+
WEIGHT_DECAY: 0.0001
|
34 |
+
OPTIMIZER: "ADAMW"
|
35 |
+
BACKBONE_MULTIPLIER: 0.1
|
36 |
+
CLIP_GRADIENTS:
|
37 |
+
ENABLED: True
|
38 |
+
CLIP_TYPE: "full_model"
|
39 |
+
CLIP_VALUE: 0.01
|
40 |
+
NORM_TYPE: 2.0
|
41 |
+
CUSTOM_MULTIPLIER: 0.1
|
42 |
+
CUSTOM_MULTIPLIER_NAME: ['reference_points', 'sampling_offsets']
|
43 |
+
INPUT:
|
44 |
+
FORMAT: "RGB"
|
45 |
+
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
|
46 |
+
CROP:
|
47 |
+
ENABLED: True
|
48 |
+
TYPE: "absolute_range"
|
49 |
+
SIZE: (384, 600)
|
50 |
+
CUSTOM_AUG: "DETR"
|
51 |
+
TEST:
|
52 |
+
DETECTIONS_PER_IMAGE: 300
|
53 |
+
DATALOADER:
|
54 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
55 |
+
NUM_WORKERS: 4
|
56 |
+
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
57 |
+
REPEAT_THRESHOLD: 0.001
|
58 |
+
OUTPUT_DIR: "output/Detic/auto"
|
59 |
+
VERSION: 2
|
configs/Base_OVCOCO_C4_1x.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "CustomRCNN"
|
3 |
+
RPN:
|
4 |
+
PRE_NMS_TOPK_TEST: 6000
|
5 |
+
POST_NMS_TOPK_TEST: 1000
|
6 |
+
ROI_HEADS:
|
7 |
+
NAME: "CustomRes5ROIHeads"
|
8 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
9 |
+
RESNETS:
|
10 |
+
DEPTH: 50
|
11 |
+
ROI_BOX_HEAD:
|
12 |
+
CLS_AGNOSTIC_BBOX_REG: True
|
13 |
+
USE_SIGMOID_CE: True
|
14 |
+
USE_ZEROSHOT_CLS: True
|
15 |
+
ZEROSHOT_WEIGHT_PATH: 'datasets/metadata/coco_clip_a+cname.npy'
|
16 |
+
IGNORE_ZERO_CATS: True
|
17 |
+
CAT_FREQ_PATH: 'datasets/coco/zero-shot/instances_train2017_seen_2_oriorder_cat_info.json'
|
18 |
+
DATASETS:
|
19 |
+
TRAIN: ("coco_zeroshot_train_oriorder",)
|
20 |
+
TEST: ("coco_generalized_zeroshot_val",)
|
21 |
+
SOLVER:
|
22 |
+
IMS_PER_BATCH: 16
|
23 |
+
BASE_LR: 0.02
|
24 |
+
STEPS: (60000, 80000)
|
25 |
+
MAX_ITER: 90000
|
26 |
+
CHECKPOINT_PERIOD: 1000000000
|
27 |
+
INPUT:
|
28 |
+
MIN_SIZE_TRAIN: (800,)
|
29 |
+
VERSION: 2
|
30 |
+
OUTPUT_DIR: output/Detic-COCO/auto
|
31 |
+
FP16: True
|
configs/BoxSup-C2_LCOCO_CLIP_SwinB_896b32_4x.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
5 |
+
WEIGHTS: "models/swin_base_patch4_window7_224_22k.pkl"
|
6 |
+
BACKBONE:
|
7 |
+
NAME: build_swintransformer_fpn_backbone
|
8 |
+
SWIN:
|
9 |
+
SIZE: B-22k
|
10 |
+
FPN:
|
11 |
+
IN_FEATURES: ["swin1", "swin2", "swin3"]
|
12 |
+
SOLVER:
|
13 |
+
MAX_ITER: 180000
|
14 |
+
IMS_PER_BATCH: 32
|
15 |
+
BASE_LR: 0.0001
|
16 |
+
INPUT:
|
17 |
+
TRAIN_SIZE: 896
|
18 |
+
DATASETS:
|
19 |
+
TRAIN: ("lvis_v1_train+coco",)
|
configs/BoxSup-C2_L_CLIP_R5021k_640b64_4x.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
configs/BoxSup-C2_L_CLIP_SwinB_896b32_4x.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
5 |
+
WEIGHTS: "models/swin_base_patch4_window7_224_22k.pkl"
|
6 |
+
BACKBONE:
|
7 |
+
NAME: build_swintransformer_fpn_backbone
|
8 |
+
SWIN:
|
9 |
+
SIZE: B-22k
|
10 |
+
FPN:
|
11 |
+
IN_FEATURES: ["swin1", "swin2", "swin3"]
|
12 |
+
SOLVER:
|
13 |
+
MAX_ITER: 180000
|
14 |
+
IMS_PER_BATCH: 32
|
15 |
+
BASE_LR: 0.0001
|
16 |
+
INPUT:
|
17 |
+
TRAIN_SIZE: 896
|
configs/BoxSup-C2_Lbase_CLIP_R5021k_640b64_4x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
5 |
+
DATASETS:
|
6 |
+
TRAIN: ("lvis_v1_train_norare",)
|
configs/BoxSup-C2_Lbase_CLIP_SwinB_896b32_4x.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
5 |
+
WEIGHTS: "models/swin_base_patch4_window7_224_22k.pkl"
|
6 |
+
BACKBONE:
|
7 |
+
NAME: build_swintransformer_fpn_backbone
|
8 |
+
SWIN:
|
9 |
+
SIZE: B-22k
|
10 |
+
FPN:
|
11 |
+
IN_FEATURES: ["swin1", "swin2", "swin3"]
|
12 |
+
SOLVER:
|
13 |
+
MAX_ITER: 180000
|
14 |
+
IMS_PER_BATCH: 32
|
15 |
+
BASE_LR: 0.0001
|
16 |
+
INPUT:
|
17 |
+
TRAIN_SIZE: 896
|
18 |
+
DATASETS:
|
19 |
+
TRAIN: ("lvis_v1_train_norare",)
|
configs/BoxSup-DeformDETR_L_R50_2x.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-DeformDETR_L_R50_4x.yaml"
|
2 |
+
SOLVER:
|
3 |
+
IMS_PER_BATCH: 16
|
configs/BoxSup-DeformDETR_L_R50_4x.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
_BASE_: "Base-DeformDETR_L_R50_4x.yaml"
|
configs/BoxSup_OVCOCO_CLIP_R50_1x.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
_BASE_: "Base_OVCOCO_C4_1x.yaml"
|
configs/Detic_DeformDETR_LI_R50_4x_ft4x.yaml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-DeformDETR_L_R50_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "models/BoxSup-DeformDETR_L_R50_4x.pth"
|
4 |
+
INPUT:
|
5 |
+
CUSTOM_AUG: ResizeShortestEdge
|
6 |
+
MIN_SIZE_TRAIN_SAMPLING: range
|
7 |
+
MIN_SIZE_TRAIN: [480, 800]
|
8 |
+
DATASETS:
|
9 |
+
TRAIN: ("lvis_v1_train","imagenet_lvis_v1")
|
10 |
+
TEST: ("lvis_v1_val",)
|
11 |
+
DATALOADER:
|
12 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
13 |
+
DATASET_RATIO: [1, 4]
|
14 |
+
USE_DIFF_BS_SIZE: True
|
15 |
+
DATASET_BS: [4, 16]
|
16 |
+
USE_RFS: [True, False]
|
17 |
+
DATASET_MIN_SIZES: [[480, 800], [240, 400]]
|
18 |
+
DATASET_MAX_SIZES: [1333, 667]
|
19 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
20 |
+
MULTI_DATASET_GROUPING: True
|
21 |
+
DATASET_ANN: ['box', 'image']
|
22 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "models/BoxSup-C2_LCOCO_CLIP_SwinB_896b32_4x.pth"
|
4 |
+
DYNAMIC_CLASSIFIER: True
|
5 |
+
ROI_BOX_HEAD:
|
6 |
+
USE_ZEROSHOT_CLS: True
|
7 |
+
IMAGE_LABEL_LOSS: 'max_size'
|
8 |
+
ZEROSHOT_WEIGHT_PATH: 'datasets/metadata/lvis-21k_clip_a+cname.npy'
|
9 |
+
USE_FED_LOSS: False # Federated loss is enabled when DYNAMIC_CLASSIFIER is on
|
10 |
+
ROI_HEADS:
|
11 |
+
NUM_CLASSES: 22047
|
12 |
+
BACKBONE:
|
13 |
+
NAME: build_swintransformer_fpn_backbone
|
14 |
+
SWIN:
|
15 |
+
SIZE: B-22k
|
16 |
+
FPN:
|
17 |
+
IN_FEATURES: ["swin1", "swin2", "swin3"]
|
18 |
+
RESET_CLS_TESTS: True
|
19 |
+
TEST_CLASSIFIERS: ("datasets/metadata/oid_clip_a+cname.npy","datasets/metadata/o365_clip_a+cnamefix.npy")
|
20 |
+
TEST_NUM_CLASSES: [500, 365]
|
21 |
+
SOLVER:
|
22 |
+
MAX_ITER: 180000
|
23 |
+
IMS_PER_BATCH: 32
|
24 |
+
BASE_LR: 0.0001
|
25 |
+
WARMUP_ITERS: 1000
|
26 |
+
WARMUP_FACTOR: 0.001
|
27 |
+
DATASETS:
|
28 |
+
TRAIN: ("lvis_v1_train+coco","imagenet_lvis-22k")
|
29 |
+
TEST: ('oid_val_expanded', 'objects365_v2_val')
|
30 |
+
DATALOADER:
|
31 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
32 |
+
DATASET_RATIO: [1, 16]
|
33 |
+
USE_DIFF_BS_SIZE: True
|
34 |
+
DATASET_BS: [4, 16]
|
35 |
+
DATASET_INPUT_SIZE: [896, 448]
|
36 |
+
USE_RFS: [True, False]
|
37 |
+
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.5, 1.5]]
|
38 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
39 |
+
MULTI_DATASET_GROUPING: True
|
40 |
+
DATASET_ANN: ['box', 'image']
|
41 |
+
NUM_WORKERS: 4
|
42 |
+
USE_TAR_DATASET: True
|
43 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_LI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "models/BoxSup-C2_L_CLIP_SwinB_896b32_4x.pth"
|
4 |
+
DYNAMIC_CLASSIFIER: True
|
5 |
+
ROI_BOX_HEAD:
|
6 |
+
USE_ZEROSHOT_CLS: True
|
7 |
+
IMAGE_LABEL_LOSS: 'max_size'
|
8 |
+
ZEROSHOT_WEIGHT_PATH: 'datasets/metadata/lvis-21k_clip_a+cname.npy'
|
9 |
+
USE_FED_LOSS: False # Federated loss is enabled when DYNAMIC_CLASSIFIER is on
|
10 |
+
ROI_HEADS:
|
11 |
+
NUM_CLASSES: 22047
|
12 |
+
BACKBONE:
|
13 |
+
NAME: build_swintransformer_fpn_backbone
|
14 |
+
SWIN:
|
15 |
+
SIZE: B-22k
|
16 |
+
FPN:
|
17 |
+
IN_FEATURES: ["swin1", "swin2", "swin3"]
|
18 |
+
RESET_CLS_TESTS: True
|
19 |
+
TEST_CLASSIFIERS: ("datasets/metadata/oid_clip_a+cname.npy","datasets/metadata/o365_clip_a+cnamefix.npy")
|
20 |
+
TEST_NUM_CLASSES: [500, 365]
|
21 |
+
SOLVER:
|
22 |
+
MAX_ITER: 180000
|
23 |
+
IMS_PER_BATCH: 32
|
24 |
+
BASE_LR: 0.0001
|
25 |
+
WARMUP_ITERS: 1000
|
26 |
+
WARMUP_FACTOR: 0.001
|
27 |
+
DATASETS:
|
28 |
+
TRAIN: ("lvis_v1_train","imagenet_lvis-22k")
|
29 |
+
TEST: ('oid_val_expanded', 'objects365_v2_val')
|
30 |
+
DATALOADER:
|
31 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
32 |
+
DATASET_RATIO: [1, 16]
|
33 |
+
USE_DIFF_BS_SIZE: True
|
34 |
+
DATASET_BS: [4, 16]
|
35 |
+
DATASET_INPUT_SIZE: [896, 448]
|
36 |
+
USE_RFS: [True, False]
|
37 |
+
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.5, 1.5]]
|
38 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
39 |
+
MULTI_DATASET_GROUPING: True
|
40 |
+
DATASET_ANN: ['box', 'image']
|
41 |
+
NUM_WORKERS: 4
|
42 |
+
USE_TAR_DATASET: True
|
43 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_LI_CLIP_R5021k_640b64_4x_ft4x_max-size.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
5 |
+
IMAGE_LABEL_LOSS: 'max_size'
|
6 |
+
WEIGHTS: "models/BoxSup-C2_L_CLIP_R5021k_640b64_4x.pth"
|
7 |
+
SOLVER:
|
8 |
+
MAX_ITER: 90000
|
9 |
+
IMS_PER_BATCH: 64
|
10 |
+
BASE_LR: 0.0002
|
11 |
+
WARMUP_ITERS: 1000
|
12 |
+
WARMUP_FACTOR: 0.001
|
13 |
+
DATASETS:
|
14 |
+
TRAIN: ("lvis_v1_train","imagenet_lvis_v1")
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
DATASET_RATIO: [1, 4]
|
18 |
+
USE_DIFF_BS_SIZE: True
|
19 |
+
DATASET_BS: [8, 32]
|
20 |
+
DATASET_INPUT_SIZE: [640, 320]
|
21 |
+
USE_RFS: [True, False]
|
22 |
+
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.5, 1.5]]
|
23 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
24 |
+
MULTI_DATASET_GROUPING: True
|
25 |
+
DATASET_ANN: ['box', 'image']
|
26 |
+
NUM_WORKERS: 8
|
27 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_LI_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
5 |
+
IMAGE_LABEL_LOSS: 'max_size'
|
6 |
+
BACKBONE:
|
7 |
+
NAME: build_swintransformer_fpn_backbone
|
8 |
+
SWIN:
|
9 |
+
SIZE: B-22k
|
10 |
+
FPN:
|
11 |
+
IN_FEATURES: ["swin1", "swin2", "swin3"]
|
12 |
+
WEIGHTS: "models/BoxSup-C2_L_CLIP_SwinB_896b32_4x.pth"
|
13 |
+
SOLVER:
|
14 |
+
MAX_ITER: 180000
|
15 |
+
IMS_PER_BATCH: 32
|
16 |
+
BASE_LR: 0.0001
|
17 |
+
WARMUP_ITERS: 1000
|
18 |
+
WARMUP_FACTOR: 0.001
|
19 |
+
DATASETS:
|
20 |
+
TRAIN: ("lvis_v1_train","imagenet_lvis_v1")
|
21 |
+
DATALOADER:
|
22 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
23 |
+
DATASET_RATIO: [1, 4]
|
24 |
+
USE_DIFF_BS_SIZE: True
|
25 |
+
DATASET_BS: [4, 16]
|
26 |
+
DATASET_INPUT_SIZE: [896, 448]
|
27 |
+
USE_RFS: [True, False]
|
28 |
+
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.5, 1.5]]
|
29 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
30 |
+
MULTI_DATASET_GROUPING: True
|
31 |
+
DATASET_ANN: ['box', 'image']
|
32 |
+
NUM_WORKERS: 8
|
33 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_LbaseCCcapimg_CLIP_R5021k_640b64_4x_ft4x_max-size.yaml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
WITH_CAPTION: True
|
4 |
+
SYNC_CAPTION_BATCH: True
|
5 |
+
ROI_BOX_HEAD:
|
6 |
+
ADD_IMAGE_BOX: True # caption loss is added to the image-box
|
7 |
+
USE_ZEROSHOT_CLS: True
|
8 |
+
IMAGE_LABEL_LOSS: 'max_size'
|
9 |
+
WEIGHTS: "models/BoxSup-C2_Lbase_CLIP_R5021k_640b64_4x.pth"
|
10 |
+
SOLVER:
|
11 |
+
MAX_ITER: 90000
|
12 |
+
IMS_PER_BATCH: 64
|
13 |
+
BASE_LR: 0.0002
|
14 |
+
WARMUP_ITERS: 1000
|
15 |
+
WARMUP_FACTOR: 0.001
|
16 |
+
DATASETS:
|
17 |
+
TRAIN: ("lvis_v1_train_norare","cc3m_v1_train_tags")
|
18 |
+
DATALOADER:
|
19 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
20 |
+
DATASET_RATIO: [1, 4]
|
21 |
+
USE_DIFF_BS_SIZE: True
|
22 |
+
DATASET_BS: [8, 32]
|
23 |
+
DATASET_INPUT_SIZE: [640, 320]
|
24 |
+
USE_RFS: [True, False]
|
25 |
+
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.5, 1.5]]
|
26 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
27 |
+
MULTI_DATASET_GROUPING: True
|
28 |
+
DATASET_ANN: ['box', 'captiontag']
|
29 |
+
NUM_WORKERS: 8
|
30 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_LbaseCCimg_CLIP_R5021k_640b64_4x_ft4x_max-size.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
5 |
+
IMAGE_LABEL_LOSS: 'max_size'
|
6 |
+
WEIGHTS: "models/BoxSup-C2_Lbase_CLIP_R5021k_640b64_4x.pth"
|
7 |
+
SOLVER:
|
8 |
+
MAX_ITER: 90000
|
9 |
+
IMS_PER_BATCH: 64
|
10 |
+
BASE_LR: 0.0002
|
11 |
+
WARMUP_ITERS: 1000
|
12 |
+
WARMUP_FACTOR: 0.001
|
13 |
+
DATASETS:
|
14 |
+
TRAIN: ("lvis_v1_train_norare","cc3m_v1_train_tags")
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
DATASET_RATIO: [1, 4]
|
18 |
+
USE_DIFF_BS_SIZE: True
|
19 |
+
DATASET_BS: [8, 32]
|
20 |
+
DATASET_INPUT_SIZE: [640, 320]
|
21 |
+
USE_RFS: [True, False]
|
22 |
+
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.5, 1.5]]
|
23 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
24 |
+
MULTI_DATASET_GROUPING: True
|
25 |
+
DATASET_ANN: ['box', 'image']
|
26 |
+
NUM_WORKERS: 8
|
27 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_LbaseI_CLIP_R5021k_640b64_4x_ft4x_max-size.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
5 |
+
IMAGE_LABEL_LOSS: 'max_size'
|
6 |
+
WEIGHTS: "models/BoxSup-C2_Lbase_CLIP_R5021k_640b64_4x.pth"
|
7 |
+
SOLVER:
|
8 |
+
MAX_ITER: 90000
|
9 |
+
IMS_PER_BATCH: 64
|
10 |
+
BASE_LR: 0.0002
|
11 |
+
WARMUP_ITERS: 1000
|
12 |
+
WARMUP_FACTOR: 0.001
|
13 |
+
DATASETS:
|
14 |
+
TRAIN: ("lvis_v1_train_norare","imagenet_lvis_v1")
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
DATASET_RATIO: [1, 4]
|
18 |
+
USE_DIFF_BS_SIZE: True
|
19 |
+
DATASET_BS: [8, 32]
|
20 |
+
DATASET_INPUT_SIZE: [640, 320]
|
21 |
+
USE_RFS: [True, False]
|
22 |
+
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.5, 1.5]]
|
23 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
24 |
+
MULTI_DATASET_GROUPING: True
|
25 |
+
DATASET_ANN: ['box', 'image']
|
26 |
+
NUM_WORKERS: 8
|
27 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_LbaseI_CLIP_R5021k_640b64_4x_ft4x_predicted.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
5 |
+
IMAGE_LABEL_LOSS: 'max_score'
|
6 |
+
WEIGHTS: "models/BoxSup-C2_Lbase_CLIP_R5021k_640b64_4x.pth"
|
7 |
+
SOLVER:
|
8 |
+
MAX_ITER: 90000
|
9 |
+
IMS_PER_BATCH: 64
|
10 |
+
BASE_LR: 0.0002
|
11 |
+
WARMUP_ITERS: 1000
|
12 |
+
WARMUP_FACTOR: 0.001
|
13 |
+
DATASETS:
|
14 |
+
TRAIN: ("lvis_v1_train_norare","imagenet_lvis_v1")
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
DATASET_RATIO: [1, 4]
|
18 |
+
USE_DIFF_BS_SIZE: True
|
19 |
+
DATASET_BS: [8, 32]
|
20 |
+
DATASET_INPUT_SIZE: [640, 320]
|
21 |
+
USE_RFS: [True, False]
|
22 |
+
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.5, 1.5]]
|
23 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
24 |
+
MULTI_DATASET_GROUPING: True
|
25 |
+
DATASET_ANN: ['box', 'image']
|
26 |
+
NUM_WORKERS: 8
|
27 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_LbaseI_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-C2_L_R5021k_640b64_4x.yaml"
|
2 |
+
MODEL:
|
3 |
+
ROI_BOX_HEAD:
|
4 |
+
USE_ZEROSHOT_CLS: True
|
5 |
+
IMAGE_LABEL_LOSS: 'max_size'
|
6 |
+
BACKBONE:
|
7 |
+
NAME: build_swintransformer_fpn_backbone
|
8 |
+
SWIN:
|
9 |
+
SIZE: B-22k
|
10 |
+
FPN:
|
11 |
+
IN_FEATURES: ["swin1", "swin2", "swin3"]
|
12 |
+
WEIGHTS: "models/BoxSup-C2_Lbase_CLIP_SwinB_896b32_4x.pth"
|
13 |
+
SOLVER:
|
14 |
+
MAX_ITER: 180000
|
15 |
+
IMS_PER_BATCH: 32
|
16 |
+
BASE_LR: 0.0001
|
17 |
+
WARMUP_ITERS: 1000
|
18 |
+
WARMUP_FACTOR: 0.001
|
19 |
+
DATASETS:
|
20 |
+
TRAIN: ("lvis_v1_train_norare","imagenet_lvis_v1")
|
21 |
+
DATALOADER:
|
22 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
23 |
+
DATASET_RATIO: [1, 4]
|
24 |
+
USE_DIFF_BS_SIZE: True
|
25 |
+
DATASET_BS: [4, 16]
|
26 |
+
DATASET_INPUT_SIZE: [896, 448]
|
27 |
+
USE_RFS: [True, False]
|
28 |
+
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.5, 1.5]]
|
29 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
30 |
+
MULTI_DATASET_GROUPING: True
|
31 |
+
DATASET_ANN: ['box', 'image']
|
32 |
+
NUM_WORKERS: 8
|
33 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_OVCOCO_CLIP_R50_1x_caption.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base_OVCOCO_C4_1x.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "models/BoxSup_OVCOCO_CLIP_R50_1x.pth"
|
4 |
+
WITH_CAPTION: True
|
5 |
+
SYNC_CAPTION_BATCH: True
|
6 |
+
ROI_BOX_HEAD:
|
7 |
+
WS_NUM_PROPS: 1
|
8 |
+
ADD_IMAGE_BOX: True
|
9 |
+
NEG_CAP_WEIGHT: 1.0
|
10 |
+
SOLVER:
|
11 |
+
IMS_PER_BATCH: 16
|
12 |
+
BASE_LR: 0.02
|
13 |
+
STEPS: (60000, 80000)
|
14 |
+
MAX_ITER: 90000
|
15 |
+
DATASETS:
|
16 |
+
TRAIN: ("coco_zeroshot_train_oriorder", "coco_caption_train_tags")
|
17 |
+
INPUT:
|
18 |
+
CUSTOM_AUG: ResizeShortestEdge
|
19 |
+
MIN_SIZE_TRAIN_SAMPLING: range
|
20 |
+
MIN_SIZE_TRAIN: (800, 800)
|
21 |
+
DATALOADER:
|
22 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
23 |
+
DATASET_RATIO: [1, 4]
|
24 |
+
USE_DIFF_BS_SIZE: True
|
25 |
+
DATASET_BS: [2, 8]
|
26 |
+
USE_RFS: [False, False]
|
27 |
+
DATASET_MIN_SIZES: [[800, 800], [400, 400]]
|
28 |
+
DATASET_MAX_SIZES: [1333, 667]
|
29 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
30 |
+
MULTI_DATASET_GROUPING: True
|
31 |
+
DATASET_ANN: ['box', 'caption']
|
32 |
+
NUM_WORKERS: 8
|
33 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_OVCOCO_CLIP_R50_1x_max-size.yaml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base_OVCOCO_C4_1x.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "models/BoxSup_OVCOCO_CLIP_R50_1x.pth"
|
4 |
+
ROI_BOX_HEAD:
|
5 |
+
WS_NUM_PROPS: 32
|
6 |
+
IMAGE_LABEL_LOSS: 'max_size'
|
7 |
+
SOLVER:
|
8 |
+
IMS_PER_BATCH: 16
|
9 |
+
BASE_LR: 0.02
|
10 |
+
STEPS: (60000, 80000)
|
11 |
+
MAX_ITER: 90000
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("coco_zeroshot_train_oriorder", "coco_caption_train_tags")
|
14 |
+
INPUT:
|
15 |
+
CUSTOM_AUG: ResizeShortestEdge
|
16 |
+
MIN_SIZE_TRAIN_SAMPLING: range
|
17 |
+
MIN_SIZE_TRAIN: (800, 800)
|
18 |
+
DATALOADER:
|
19 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
20 |
+
DATASET_RATIO: [1, 4]
|
21 |
+
USE_DIFF_BS_SIZE: True
|
22 |
+
DATASET_BS: [2, 8]
|
23 |
+
USE_RFS: [False, False]
|
24 |
+
DATASET_MIN_SIZES: [[800, 800], [400, 400]]
|
25 |
+
DATASET_MAX_SIZES: [1333, 667]
|
26 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
27 |
+
MULTI_DATASET_GROUPING: True
|
28 |
+
DATASET_ANN: ['box', 'image']
|
29 |
+
NUM_WORKERS: 8
|
30 |
+
WITH_IMAGE_LABELS: True
|
configs/Detic_OVCOCO_CLIP_R50_1x_max-size_caption.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base_OVCOCO_C4_1x.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "models/BoxSup_OVCOCO_CLIP_R50_1x.pth"
|
4 |
+
WITH_CAPTION: True
|
5 |
+
SYNC_CAPTION_BATCH: True
|
6 |
+
ROI_BOX_HEAD:
|
7 |
+
WS_NUM_PROPS: 32
|
8 |
+
ADD_IMAGE_BOX: True # caption loss is added to the image-box
|
9 |
+
IMAGE_LABEL_LOSS: 'max_size'
|
10 |
+
|
11 |
+
NEG_CAP_WEIGHT: 1.0
|
12 |
+
SOLVER:
|
13 |
+
IMS_PER_BATCH: 16
|
14 |
+
BASE_LR: 0.02
|
15 |
+
STEPS: (60000, 80000)
|
16 |
+
MAX_ITER: 90000
|
17 |
+
DATASETS:
|
18 |
+
TRAIN: ("coco_zeroshot_train_oriorder", "coco_caption_train_tags")
|
19 |
+
INPUT:
|
20 |
+
CUSTOM_AUG: ResizeShortestEdge
|
21 |
+
MIN_SIZE_TRAIN_SAMPLING: range
|
22 |
+
MIN_SIZE_TRAIN: (800, 800)
|
23 |
+
DATALOADER:
|
24 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
25 |
+
DATASET_RATIO: [1, 4]
|
26 |
+
USE_DIFF_BS_SIZE: True
|
27 |
+
DATASET_BS: [2, 8]
|
28 |
+
USE_RFS: [False, False]
|
29 |
+
DATASET_MIN_SIZES: [[800, 800], [400, 400]]
|
30 |
+
DATASET_MAX_SIZES: [1333, 667]
|
31 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
32 |
+
MULTI_DATASET_GROUPING: True
|
33 |
+
DATASET_ANN: ['box', 'captiontag']
|
34 |
+
NUM_WORKERS: 8
|
35 |
+
WITH_IMAGE_LABELS: True
|
datasets/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
datasets/README.md
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Prepare datasets for Detic
|
2 |
+
|
3 |
+
The basic training of our model uses [LVIS](https://www.lvisdataset.org/) (which uses [COCO](https://cocodataset.org/) images) and [ImageNet-21K](https://www.image-net.org/download.php).
|
4 |
+
Some models are trained on [Conceptual Caption (CC3M)](https://ai.google.com/research/ConceptualCaptions/).
|
5 |
+
Optionally, we use [Objects365](https://www.objects365.org/) and [OpenImages (Challenge 2019 version)](https://storage.googleapis.com/openimages/web/challenge2019.html) for cross-dataset evaluation.
|
6 |
+
Before starting processing, please download the (selected) datasets from the official websites and place or sim-link them under `$Detic_ROOT/datasets/`.
|
7 |
+
|
8 |
+
```
|
9 |
+
$Detic_ROOT/datasets/
|
10 |
+
metadata/
|
11 |
+
lvis/
|
12 |
+
coco/
|
13 |
+
imagenet/
|
14 |
+
cc3m/
|
15 |
+
objects365/
|
16 |
+
oid/
|
17 |
+
```
|
18 |
+
`metadata/` is our preprocessed meta-data (included in the repo). See the below [section](#Metadata) for details.
|
19 |
+
Please follow the following instruction to pre-process individual datasets.
|
20 |
+
|
21 |
+
### COCO and LVIS
|
22 |
+
|
23 |
+
First, download COCO and LVIS data place them in the following way:
|
24 |
+
|
25 |
+
```
|
26 |
+
lvis/
|
27 |
+
lvis_v1_train.json
|
28 |
+
lvis_v1_val.json
|
29 |
+
coco/
|
30 |
+
train2017/
|
31 |
+
val2017/
|
32 |
+
annotations/
|
33 |
+
captions_train2017.json
|
34 |
+
instances_train2017.json
|
35 |
+
instances_val2017.json
|
36 |
+
```
|
37 |
+
|
38 |
+
Next, prepare the open-vocabulary LVIS training set using
|
39 |
+
|
40 |
+
```
|
41 |
+
python tools/remove_lvis_rare.py --ann datasets/lvis/lvis_v1_train.json
|
42 |
+
```
|
43 |
+
|
44 |
+
This will generate `datasets/lvis/lvis_v1_train_norare.json`.
|
45 |
+
|
46 |
+
### ImageNet-21K
|
47 |
+
|
48 |
+
The ImageNet-21K folder should look like:
|
49 |
+
```
|
50 |
+
imagenet/
|
51 |
+
ImageNet-21K/
|
52 |
+
n01593028.tar
|
53 |
+
n01593282.tar
|
54 |
+
...
|
55 |
+
```
|
56 |
+
|
57 |
+
We first unzip the overlapping classes of LVIS (we will directly work with the .tar file for the rest classes) and convert them into LVIS annotation format.
|
58 |
+
|
59 |
+
~~~
|
60 |
+
mkdir imagenet/annotations
|
61 |
+
python tools/unzip_imagenet_lvis.py --dst_path datasets/imagenet/ImageNet-LVIS
|
62 |
+
python tools/create_imagenetlvis_json.py --imagenet_path datasets/imagenet/ImageNet-LVIS --out_path datasets/imagenet/annotations/imagenet_lvis_image_info.json
|
63 |
+
~~~
|
64 |
+
This creates `datasets/imagenet/annotations/imagenet_lvis_image_info.json`.
|
65 |
+
|
66 |
+
[Optional] To train with all the 21K classes, run
|
67 |
+
|
68 |
+
~~~
|
69 |
+
python tools/get_imagenet_21k_full_tar_json.py
|
70 |
+
python tools/create_lvis_21k.py
|
71 |
+
~~~
|
72 |
+
This creates `datasets/imagenet/annotations/imagenet-21k_image_info_lvis-21k.json` and `datasets/lvis/lvis_v1_train_lvis-21k.json` (combined LVIS and ImageNet-21K classes in `categories`).
|
73 |
+
|
74 |
+
[Optional] To train on combined LVIS and COCO, run
|
75 |
+
|
76 |
+
~~~
|
77 |
+
python tools/merge_lvis_coco.py
|
78 |
+
~~~
|
79 |
+
This creates `datasets/lvis/lvis_v1_train+coco_mask.json`
|
80 |
+
|
81 |
+
### Conceptual Caption
|
82 |
+
|
83 |
+
|
84 |
+
Download the dataset from [this](https://ai.google.com/research/ConceptualCaptions/download) page and place them as:
|
85 |
+
```
|
86 |
+
cc3m/
|
87 |
+
GCC-training.tsv
|
88 |
+
```
|
89 |
+
|
90 |
+
Run the following command to download the images and convert the annotations to LVIS format (Note: download images takes long).
|
91 |
+
|
92 |
+
~~~
|
93 |
+
python tools/download_cc.py --ann datasets/cc3m/GCC-training.tsv --save_image_path datasets/cc3m/training/ --out_path datasets/cc3m/train_image_info.json
|
94 |
+
python tools/get_cc_tags.py
|
95 |
+
~~~
|
96 |
+
|
97 |
+
This creates `datasets/cc3m/train_image_info_tags.json`.
|
98 |
+
|
99 |
+
### Objects365
|
100 |
+
Download Objects365 (v2) from the website. We only need the validation set in this project:
|
101 |
+
```
|
102 |
+
objects365/
|
103 |
+
annotations/
|
104 |
+
zhiyuan_objv2_val.json
|
105 |
+
val/
|
106 |
+
images/
|
107 |
+
v1/
|
108 |
+
patch0/
|
109 |
+
...
|
110 |
+
patch15/
|
111 |
+
v2/
|
112 |
+
patch16/
|
113 |
+
...
|
114 |
+
patch49/
|
115 |
+
|
116 |
+
```
|
117 |
+
|
118 |
+
The original annotation has typos in the class names, we first fix them for our following use of language embeddings.
|
119 |
+
|
120 |
+
```
|
121 |
+
python tools/fix_o365_names.py --ann datasets/objects365/annotations/zhiyuan_objv2_val.json
|
122 |
+
```
|
123 |
+
This creates `datasets/objects365/zhiyuan_objv2_val_fixname.json`.
|
124 |
+
|
125 |
+
To train on Objects365, download the training images and use the command above. We note some images in the training annotation do not exist.
|
126 |
+
We use the following command to filter the missing images.
|
127 |
+
~~~
|
128 |
+
python tools/fix_0365_path.py
|
129 |
+
~~~
|
130 |
+
This creates `datasets/objects365/zhiyuan_objv2_train_fixname_fixmiss.json`.
|
131 |
+
|
132 |
+
### OpenImages
|
133 |
+
|
134 |
+
We followed the instructions in [UniDet](https://github.com/xingyizhou/UniDet/blob/master/projects/UniDet/unidet_docs/DATASETS.md#openimages) to convert the metadata for OpenImages.
|
135 |
+
|
136 |
+
The converted folder should look like
|
137 |
+
|
138 |
+
```
|
139 |
+
oid/
|
140 |
+
annotations/
|
141 |
+
oid_challenge_2019_train_bbox.json
|
142 |
+
oid_challenge_2019_val_expanded.json
|
143 |
+
images/
|
144 |
+
0/
|
145 |
+
1/
|
146 |
+
2/
|
147 |
+
...
|
148 |
+
```
|
149 |
+
|
150 |
+
### Open-vocabulary COCO
|
151 |
+
|
152 |
+
We first follow [OVR-CNN](https://github.com/alirezazareian/ovr-cnn/blob/master/ipynb/003.ipynb) to create the open-vocabulary COCO split. The converted files should be like
|
153 |
+
|
154 |
+
```
|
155 |
+
coco/
|
156 |
+
zero-shot/
|
157 |
+
instances_train2017_seen_2.json
|
158 |
+
instances_val2017_all_2.json
|
159 |
+
```
|
160 |
+
|
161 |
+
We further pre-process the annotation format for easier evaluation:
|
162 |
+
|
163 |
+
```
|
164 |
+
python tools/get_coco_zeroshot_oriorder.py --data_path datasets/coco/zero-shot/instances_train2017_seen_2.json
|
165 |
+
python tools/get_coco_zeroshot_oriorder.py --data_path datasets/coco/zero-shot/instances_val2017_all_2.json
|
166 |
+
```
|
167 |
+
|
168 |
+
Next, we preprocess the COCO caption data:
|
169 |
+
|
170 |
+
```
|
171 |
+
python tools/get_cc_tags.py --cc_ann datasets/coco/annotations/captions_train2017.json --out_path datasets/coco/captions_train2017_tags_allcaps.json --allcaps --convert_caption
|
172 |
+
```
|
173 |
+
This creates `datasets/coco/captions_train2017_tags_allcaps.json`.
|
174 |
+
|
175 |
+
### Metadata
|
176 |
+
|
177 |
+
```
|
178 |
+
metadata/
|
179 |
+
lvis_v1_train_cat_info.json
|
180 |
+
coco_clip_a+cname.npy
|
181 |
+
lvis_v1_clip_a+cname.npy
|
182 |
+
o365_clip_a+cnamefix.npy
|
183 |
+
oid_clip_a+cname.npy
|
184 |
+
imagenet_lvis_wnid.txt
|
185 |
+
Objects365_names_fix.csv
|
186 |
+
```
|
187 |
+
|
188 |
+
`lvis_v1_train_cat_info.json` is used by the Federated loss.
|
189 |
+
This is created by
|
190 |
+
~~~
|
191 |
+
python tools/get_lvis_cat_info.py --ann datasets/lvis/lvis_v1_train.json
|
192 |
+
~~~
|
193 |
+
|
194 |
+
`*_clip_a+cname.npy` is the pre-computed CLIP embeddings for each datasets.
|
195 |
+
They are created by (taking LVIS as an example)
|
196 |
+
~~~
|
197 |
+
python tools/dump_clip_features.py --ann datasets/lvis/lvis_v1_val.json --out_path metadata/lvis_v1_clip_a+cname.npy
|
198 |
+
~~~
|
199 |
+
Note we do not include the 21K class embeddings due to the large file size.
|
200 |
+
To create it, run
|
201 |
+
~~~
|
202 |
+
python tools/dump_clip_features.py --ann datasets/lvis/lvis_v1_val_lvis-21k.json --out_path datasets/metadata/lvis-21k_clip_a+cname.npy
|
203 |
+
~~~
|
204 |
+
|
205 |
+
`imagenet_lvis_wnid.txt` is the list of matched classes between ImageNet-21K and LVIS.
|
206 |
+
|
207 |
+
`Objects365_names_fix.csv` is our manual fix of the Objects365 names.
|
datasets/metadata/Objects365_names_fix.csv
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1,Person,Person
|
2 |
+
2,Sneakers,Sneakers
|
3 |
+
3,Chair,Chair
|
4 |
+
4,Other Shoes,Other Shoes
|
5 |
+
5,Hat,Hat
|
6 |
+
6,Car,Car
|
7 |
+
7,Lamp,Lamp
|
8 |
+
8,Glasses,Glasses
|
9 |
+
9,Bottle,Bottle
|
10 |
+
10,Desk,Desk
|
11 |
+
11,Cup,Cup
|
12 |
+
12,Street Lights,Street Lights
|
13 |
+
13,Cabinet/shelf,Cabinet/shelf
|
14 |
+
14,Handbag/Satchel,Handbag/Satchel
|
15 |
+
15,Bracelet,Bracelet
|
16 |
+
16,Plate,Plate
|
17 |
+
17,Picture/Frame,Picture/Frame
|
18 |
+
18,Helmet,Helmet
|
19 |
+
19,Book,Book
|
20 |
+
20,Gloves,Gloves
|
21 |
+
21,Storage box,Storage box
|
22 |
+
22,Boat,Boat
|
23 |
+
23,Leather Shoes,Leather Shoes
|
24 |
+
24,Flower,Flower
|
25 |
+
25,Bench,Bench
|
26 |
+
26,Potted Plant,Potted Plant
|
27 |
+
27,Bowl/Basin,Bowl/Basin
|
28 |
+
28,Flag,Flag
|
29 |
+
29,Pillow,Pillow
|
30 |
+
30,Boots,Boots
|
31 |
+
31,Vase,Vase
|
32 |
+
32,Microphone,Microphone
|
33 |
+
33,Necklace,Necklace
|
34 |
+
34,Ring,Ring
|
35 |
+
35,SUV,SUV
|
36 |
+
36,Wine Glass,Wine Glass
|
37 |
+
37,Belt,Belt
|
38 |
+
38,Moniter/TV,Monitor/TV
|
39 |
+
39,Backpack,Backpack
|
40 |
+
40,Umbrella,Umbrella
|
41 |
+
41,Traffic Light,Traffic Light
|
42 |
+
42,Speaker,Speaker
|
43 |
+
43,Watch,Watch
|
44 |
+
44,Tie,Tie
|
45 |
+
45,Trash bin Can,Trash bin Can
|
46 |
+
46,Slippers,Slippers
|
47 |
+
47,Bicycle,Bicycle
|
48 |
+
48,Stool,Stool
|
49 |
+
49,Barrel/bucket,Barrel/bucket
|
50 |
+
50,Van,Van
|
51 |
+
51,Couch,Couch
|
52 |
+
52,Sandals,Sandals
|
53 |
+
53,Bakset,Basket
|
54 |
+
54,Drum,Drum
|
55 |
+
55,Pen/Pencil,Pen/Pencil
|
56 |
+
56,Bus,Bus
|
57 |
+
57,Wild Bird,Wild Bird
|
58 |
+
58,High Heels,High Heels
|
59 |
+
59,Motorcycle,Motorcycle
|
60 |
+
60,Guitar,Guitar
|
61 |
+
61,Carpet,Carpet
|
62 |
+
62,Cell Phone,Cell Phone
|
63 |
+
63,Bread,Bread
|
64 |
+
64,Camera,Camera
|
65 |
+
65,Canned,Canned
|
66 |
+
66,Truck,Truck
|
67 |
+
67,Traffic cone,Traffic cone
|
68 |
+
68,Cymbal,Cymbal
|
69 |
+
69,Lifesaver,Lifesaver
|
70 |
+
70,Towel,Towel
|
71 |
+
71,Stuffed Toy,Stuffed Toy
|
72 |
+
72,Candle,Candle
|
73 |
+
73,Sailboat,Sailboat
|
74 |
+
74,Laptop,Laptop
|
75 |
+
75,Awning,Awning
|
76 |
+
76,Bed,Bed
|
77 |
+
77,Faucet,Faucet
|
78 |
+
78,Tent,Tent
|
79 |
+
79,Horse,Horse
|
80 |
+
80,Mirror,Mirror
|
81 |
+
81,Power outlet,Power outlet
|
82 |
+
82,Sink,Sink
|
83 |
+
83,Apple,Apple
|
84 |
+
84,Air Conditioner,Air Conditioner
|
85 |
+
85,Knife,Knife
|
86 |
+
86,Hockey Stick,Hockey Stick
|
87 |
+
87,Paddle,Paddle
|
88 |
+
88,Pickup Truck,Pickup Truck
|
89 |
+
89,Fork,Fork
|
90 |
+
90,Traffic Sign,Traffic Sign
|
91 |
+
91,Ballon,Ballon
|
92 |
+
92,Tripod,Tripod
|
93 |
+
93,Dog,Dog
|
94 |
+
94,Spoon,Spoon
|
95 |
+
95,Clock,Clock
|
96 |
+
96,Pot,Pot
|
97 |
+
97,Cow,Cow
|
98 |
+
98,Cake,Cake
|
99 |
+
99,Dinning Table,Dining Table
|
100 |
+
100,Sheep,Sheep
|
101 |
+
101,Hanger,Hanger
|
102 |
+
102,Blackboard/Whiteboard,Blackboard/Whiteboard
|
103 |
+
103,Napkin,Napkin
|
104 |
+
104,Other Fish,Other Fish
|
105 |
+
105,Orange/Tangerine,Orange/Tangerine
|
106 |
+
106,Toiletry,Toiletry
|
107 |
+
107,Keyboard,Keyboard
|
108 |
+
108,Tomato,Tomato
|
109 |
+
109,Lantern,Lantern
|
110 |
+
110,Machinery Vehicle,Machinery Vehicle
|
111 |
+
111,Fan,Fan
|
112 |
+
112,Green Vegetables,Green Vegetables
|
113 |
+
113,Banana,Banana
|
114 |
+
114,Baseball Glove,Baseball Glove
|
115 |
+
115,Airplane,Airplane
|
116 |
+
116,Mouse,Mouse
|
117 |
+
117,Train,Train
|
118 |
+
118,Pumpkin,Pumpkin
|
119 |
+
119,Soccer,Soccer
|
120 |
+
120,Skiboard,Skiboard
|
121 |
+
121,Luggage,Luggage
|
122 |
+
122,Nightstand,Nightstand
|
123 |
+
123,Tea pot,Teapot
|
124 |
+
124,Telephone,Telephone
|
125 |
+
125,Trolley,Trolley
|
126 |
+
126,Head Phone,Head Phone
|
127 |
+
127,Sports Car,Sports Car
|
128 |
+
128,Stop Sign,Stop Sign
|
129 |
+
129,Dessert,Dessert
|
130 |
+
130,Scooter,Scooter
|
131 |
+
131,Stroller,Stroller
|
132 |
+
132,Crane,Crane
|
133 |
+
133,Remote,Remote
|
134 |
+
134,Refrigerator,Refrigerator
|
135 |
+
135,Oven,Oven
|
136 |
+
136,Lemon,Lemon
|
137 |
+
137,Duck,Duck
|
138 |
+
138,Baseball Bat,Baseball Bat
|
139 |
+
139,Surveillance Camera,Surveillance Camera
|
140 |
+
140,Cat,Cat
|
141 |
+
141,Jug,Jug
|
142 |
+
142,Broccoli,Broccoli
|
143 |
+
143,Piano,Piano
|
144 |
+
144,Pizza,Pizza
|
145 |
+
145,Elephant,Elephant
|
146 |
+
146,Skateboard,Skateboard
|
147 |
+
147,Surfboard,Surfboard
|
148 |
+
148,Gun,Gun
|
149 |
+
149,Skating and Skiing shoes,Skating and Skiing shoes
|
150 |
+
150,Gas stove,Gas stove
|
151 |
+
151,Donut,Donut
|
152 |
+
152,Bow Tie,Bow Tie
|
153 |
+
153,Carrot,Carrot
|
154 |
+
154,Toilet,Toilet
|
155 |
+
155,Kite,Kite
|
156 |
+
156,Strawberry,Strawberry
|
157 |
+
157,Other Balls,Other Balls
|
158 |
+
158,Shovel,Shovel
|
159 |
+
159,Pepper,Pepper
|
160 |
+
160,Computer Box,Computer Box
|
161 |
+
161,Toilet Paper,Toilet Paper
|
162 |
+
162,Cleaning Products,Cleaning Products
|
163 |
+
163,Chopsticks,Chopsticks
|
164 |
+
164,Microwave,Microwave
|
165 |
+
165,Pigeon,Pigeon
|
166 |
+
166,Baseball,Baseball
|
167 |
+
167,Cutting/chopping Board,Cutting/chopping Board
|
168 |
+
168,Coffee Table,Coffee Table
|
169 |
+
169,Side Table,Side Table
|
170 |
+
170,Scissors,Scissors
|
171 |
+
171,Marker,Marker
|
172 |
+
172,Pie,Pie
|
173 |
+
173,Ladder,Ladder
|
174 |
+
174,Snowboard,Snowboard
|
175 |
+
175,Cookies,Cookies
|
176 |
+
176,Radiator,Radiator
|
177 |
+
177,Fire Hydrant,Fire Hydrant
|
178 |
+
178,Basketball,Basketball
|
179 |
+
179,Zebra,Zebra
|
180 |
+
180,Grape,Grape
|
181 |
+
181,Giraffe,Giraffe
|
182 |
+
182,Potato,Potato
|
183 |
+
183,Sausage,Sausage
|
184 |
+
184,Tricycle,Tricycle
|
185 |
+
185,Violin,Violin
|
186 |
+
186,Egg,Egg
|
187 |
+
187,Fire Extinguisher,Fire Extinguisher
|
188 |
+
188,Candy,Candy
|
189 |
+
189,Fire Truck,Fire Truck
|
190 |
+
190,Billards,Billards
|
191 |
+
191,Converter,Converter
|
192 |
+
192,Bathtub,Bathtub
|
193 |
+
193,Wheelchair,Wheelchair
|
194 |
+
194,Golf Club,Golf Club
|
195 |
+
195,Briefcase,Briefcase
|
196 |
+
196,Cucumber,Cucumber
|
197 |
+
197,Cigar/Cigarette,Cigar/Cigarette
|
198 |
+
198,Paint Brush,Paint Brush
|
199 |
+
199,Pear,Pear
|
200 |
+
200,Heavy Truck,Heavy Truck
|
201 |
+
201,Hamburger,Hamburger
|
202 |
+
202,Extractor,Extractor
|
203 |
+
203,Extention Cord,Extension Cord
|
204 |
+
204,Tong,Tong
|
205 |
+
205,Tennis Racket,Tennis Racket
|
206 |
+
206,Folder,Folder
|
207 |
+
207,American Football,American Football
|
208 |
+
208,earphone,earphone
|
209 |
+
209,Mask,Mask
|
210 |
+
210,Kettle,Kettle
|
211 |
+
211,Tennis,Tennis
|
212 |
+
212,Ship,Ship
|
213 |
+
213,Swing,Swing
|
214 |
+
214,Coffee Machine,Coffee Machine
|
215 |
+
215,Slide,Slide
|
216 |
+
216,Carriage,Carriage
|
217 |
+
217,Onion,Onion
|
218 |
+
218,Green beans,Green beans
|
219 |
+
219,Projector,Projector
|
220 |
+
220,Frisbee,Frisbee
|
221 |
+
221,Washing Machine/Drying Machine,Washing Machine/Drying Machine
|
222 |
+
222,Chicken,Chicken
|
223 |
+
223,Printer,Printer
|
224 |
+
224,Watermelon,Watermelon
|
225 |
+
225,Saxophone,Saxophone
|
226 |
+
226,Tissue,Tissue
|
227 |
+
227,Toothbrush,Toothbrush
|
228 |
+
228,Ice cream,Ice cream
|
229 |
+
229,Hotair ballon,Hot air balloon
|
230 |
+
230,Cello,Cello
|
231 |
+
231,French Fries,French Fries
|
232 |
+
232,Scale,Scale
|
233 |
+
233,Trophy,Trophy
|
234 |
+
234,Cabbage,Cabbage
|
235 |
+
235,Hot dog,Hot dog
|
236 |
+
236,Blender,Blender
|
237 |
+
237,Peach,Peach
|
238 |
+
238,Rice,Rice
|
239 |
+
239,Wallet/Purse,Wallet/Purse
|
240 |
+
240,Volleyball,Volleyball
|
241 |
+
241,Deer,Deer
|
242 |
+
242,Goose,Goose
|
243 |
+
243,Tape,Tape
|
244 |
+
244,Tablet,Tablet
|
245 |
+
245,Cosmetics,Cosmetics
|
246 |
+
246,Trumpet,Trumpet
|
247 |
+
247,Pineapple,Pineapple
|
248 |
+
248,Golf Ball,Golf Ball
|
249 |
+
249,Ambulance,Ambulance
|
250 |
+
250,Parking meter,Parking meter
|
251 |
+
251,Mango,Mango
|
252 |
+
252,Key,Key
|
253 |
+
253,Hurdle,Hurdle
|
254 |
+
254,Fishing Rod,Fishing Rod
|
255 |
+
255,Medal,Medal
|
256 |
+
256,Flute,Flute
|
257 |
+
257,Brush,Brush
|
258 |
+
258,Penguin,Penguin
|
259 |
+
259,Megaphone,Megaphone
|
260 |
+
260,Corn,Corn
|
261 |
+
261,Lettuce,Lettuce
|
262 |
+
262,Garlic,Garlic
|
263 |
+
263,Swan,Swan
|
264 |
+
264,Helicopter,Helicopter
|
265 |
+
265,Green Onion,Green Onion
|
266 |
+
266,Sandwich,Sandwich
|
267 |
+
267,Nuts,Nuts
|
268 |
+
268,Speed Limit Sign,Speed Limit Sign
|
269 |
+
269,Induction Cooker,Induction Cooker
|
270 |
+
270,Broom,Broom
|
271 |
+
271,Trombone,Trombone
|
272 |
+
272,Plum,Plum
|
273 |
+
273,Rickshaw,Rickshaw
|
274 |
+
274,Goldfish,Goldfish
|
275 |
+
275,Kiwi fruit,Kiwi fruit
|
276 |
+
276,Router/modem,Router/modem
|
277 |
+
277,Poker Card,Poker Card
|
278 |
+
278,Toaster,Toaster
|
279 |
+
279,Shrimp,Shrimp
|
280 |
+
280,Sushi,Sushi
|
281 |
+
281,Cheese,Cheese
|
282 |
+
282,Notepaper,Notepaper
|
283 |
+
283,Cherry,Cherry
|
284 |
+
284,Pliers,Pliers
|
285 |
+
285,CD,CD
|
286 |
+
286,Pasta,Pasta
|
287 |
+
287,Hammer,Hammer
|
288 |
+
288,Cue,Cue
|
289 |
+
289,Avocado,Avocado
|
290 |
+
290,Hamimelon,Hami melon
|
291 |
+
291,Flask,Flask
|
292 |
+
292,Mushroon,Mushroom
|
293 |
+
293,Screwdriver,Screwdriver
|
294 |
+
294,Soap,Soap
|
295 |
+
295,Recorder,Recorder
|
296 |
+
296,Bear,Bear
|
297 |
+
297,Eggplant,Eggplant
|
298 |
+
298,Board Eraser,Board Eraser
|
299 |
+
299,Coconut,Coconut
|
300 |
+
300,Tape Measur/ Ruler,Tape Measure/ Ruler
|
301 |
+
301,Pig,Pig
|
302 |
+
302,Showerhead,Showerhead
|
303 |
+
303,Globe,Globe
|
304 |
+
304,Chips,Chips
|
305 |
+
305,Steak,Steak
|
306 |
+
306,Crosswalk Sign,Crosswalk Sign
|
307 |
+
307,Stapler,Stapler
|
308 |
+
308,Campel,Camel
|
309 |
+
309,Formula 1,Formula 1
|
310 |
+
310,Pomegranate,Pomegranate
|
311 |
+
311,Dishwasher,Dishwasher
|
312 |
+
312,Crab,Crab
|
313 |
+
313,Hoverboard,Hoverboard
|
314 |
+
314,Meat ball,Meatball
|
315 |
+
315,Rice Cooker,Rice Cooker
|
316 |
+
316,Tuba,Tuba
|
317 |
+
317,Calculator,Calculator
|
318 |
+
318,Papaya,Papaya
|
319 |
+
319,Antelope,Antelope
|
320 |
+
320,Parrot,Parrot
|
321 |
+
321,Seal,Seal
|
322 |
+
322,Buttefly,Butterfly
|
323 |
+
323,Dumbbell,Dumbbell
|
324 |
+
324,Donkey,Donkey
|
325 |
+
325,Lion,Lion
|
326 |
+
326,Urinal,Urinal
|
327 |
+
327,Dolphin,Dolphin
|
328 |
+
328,Electric Drill,Electric Drill
|
329 |
+
329,Hair Dryer,Hair Dryer
|
330 |
+
330,Egg tart,Egg tart
|
331 |
+
331,Jellyfish,Jellyfish
|
332 |
+
332,Treadmill,Treadmill
|
333 |
+
333,Lighter,Lighter
|
334 |
+
334,Grapefruit,Grapefruit
|
335 |
+
335,Game board,Game board
|
336 |
+
336,Mop,Mop
|
337 |
+
337,Radish,Radish
|
338 |
+
338,Baozi,Baozi
|
339 |
+
339,Target,Target
|
340 |
+
340,French,French
|
341 |
+
341,Spring Rolls,Spring Rolls
|
342 |
+
342,Monkey,Monkey
|
343 |
+
343,Rabbit,Rabbit
|
344 |
+
344,Pencil Case,Pencil Case
|
345 |
+
345,Yak,Yak
|
346 |
+
346,Red Cabbage,Red Cabbage
|
347 |
+
347,Binoculars,Binoculars
|
348 |
+
348,Asparagus,Asparagus
|
349 |
+
349,Barbell,Barbell
|
350 |
+
350,Scallop,Scallop
|
351 |
+
351,Noddles,Noddles
|
352 |
+
352,Comb,Comb
|
353 |
+
353,Dumpling,Dumpling
|
354 |
+
354,Oyster,Oyster
|
355 |
+
355,Table Teniis paddle,Table Tennis paddle
|
356 |
+
356,Cosmetics Brush/Eyeliner Pencil,Cosmetics Brush/Eyeliner Pencil
|
357 |
+
357,Chainsaw,Chainsaw
|
358 |
+
358,Eraser,Eraser
|
359 |
+
359,Lobster,Lobster
|
360 |
+
360,Durian,Durian
|
361 |
+
361,Okra,Okra
|
362 |
+
362,Lipstick,Lipstick
|
363 |
+
363,Cosmetics Mirror,Cosmetics Mirror
|
364 |
+
364,Curling,Curling
|
365 |
+
365,Table Tennis,Table Tennis
|
datasets/metadata/coco_clip_a+cname.npy
ADDED
Binary file (82 kB). View file
|
|
datasets/metadata/lvis_v1_clip_a+cname.npy
ADDED
Binary file (1.23 MB). View file
|
|
datasets/metadata/lvis_v1_train_cat_info.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
datasets/metadata/o365_clip_a+cnamefix.npy
ADDED
Binary file (374 kB). View file
|
|
datasets/metadata/oid_clip_a+cname.npy
ADDED
Binary file (512 kB). View file
|
|
demo.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import argparse
|
3 |
+
import glob
|
4 |
+
import multiprocessing as mp
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
import time
|
9 |
+
import warnings
|
10 |
+
import cv2
|
11 |
+
import tqdm
|
12 |
+
import sys
|
13 |
+
|
14 |
+
from detectron2.config import get_cfg
|
15 |
+
from detectron2.data.detection_utils import read_image
|
16 |
+
from detectron2.utils.logger import setup_logger
|
17 |
+
|
18 |
+
sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/')
|
19 |
+
from centernet.config import add_centernet_config
|
20 |
+
from detic.config import add_detic_config
|
21 |
+
|
22 |
+
from detic.predictor import VisualizationDemo
|
23 |
+
|
24 |
+
|
25 |
+
# constants
|
26 |
+
WINDOW_NAME = "Detic"
|
27 |
+
|
28 |
+
def setup_cfg(args):
|
29 |
+
cfg = get_cfg()
|
30 |
+
add_centernet_config(cfg)
|
31 |
+
add_detic_config(cfg)
|
32 |
+
cfg.merge_from_file(args.config_file)
|
33 |
+
cfg.merge_from_list(args.opts)
|
34 |
+
# Set score_threshold for builtin models
|
35 |
+
cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold
|
36 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold
|
37 |
+
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold
|
38 |
+
cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = 'rand' # load later
|
39 |
+
if not args.pred_all_class:
|
40 |
+
cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = True
|
41 |
+
cfg.freeze()
|
42 |
+
return cfg
|
43 |
+
|
44 |
+
|
45 |
+
def get_parser():
|
46 |
+
parser = argparse.ArgumentParser(description="Detectron2 demo for builtin configs")
|
47 |
+
parser.add_argument(
|
48 |
+
"--config-file",
|
49 |
+
default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml",
|
50 |
+
metavar="FILE",
|
51 |
+
help="path to config file",
|
52 |
+
)
|
53 |
+
parser.add_argument("--webcam", action="store_true", help="Take inputs from webcam.")
|
54 |
+
parser.add_argument("--video-input", help="Path to video file.")
|
55 |
+
parser.add_argument(
|
56 |
+
"--input",
|
57 |
+
nargs="+",
|
58 |
+
help="A list of space separated input images; "
|
59 |
+
"or a single glob pattern such as 'directory/*.jpg'",
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
"--output",
|
63 |
+
help="A file or directory to save output visualizations. "
|
64 |
+
"If not given, will show output in an OpenCV window.",
|
65 |
+
)
|
66 |
+
parser.add_argument(
|
67 |
+
"--vocabulary",
|
68 |
+
default="lvis",
|
69 |
+
choices=['lvis', 'openimages', 'objects365', 'coco', 'custom'],
|
70 |
+
help="",
|
71 |
+
)
|
72 |
+
parser.add_argument(
|
73 |
+
"--custom_vocabulary",
|
74 |
+
default="",
|
75 |
+
help="",
|
76 |
+
)
|
77 |
+
parser.add_argument("--pred_all_class", action='store_true')
|
78 |
+
parser.add_argument(
|
79 |
+
"--confidence-threshold",
|
80 |
+
type=float,
|
81 |
+
default=0.5,
|
82 |
+
help="Minimum score for instance predictions to be shown",
|
83 |
+
)
|
84 |
+
parser.add_argument(
|
85 |
+
"--opts",
|
86 |
+
help="Modify config options using the command-line 'KEY VALUE' pairs",
|
87 |
+
default=[],
|
88 |
+
nargs=argparse.REMAINDER,
|
89 |
+
)
|
90 |
+
return parser
|
91 |
+
|
92 |
+
|
93 |
+
def test_opencv_video_format(codec, file_ext):
|
94 |
+
with tempfile.TemporaryDirectory(prefix="video_format_test") as dir:
|
95 |
+
filename = os.path.join(dir, "test_file" + file_ext)
|
96 |
+
writer = cv2.VideoWriter(
|
97 |
+
filename=filename,
|
98 |
+
fourcc=cv2.VideoWriter_fourcc(*codec),
|
99 |
+
fps=float(30),
|
100 |
+
frameSize=(10, 10),
|
101 |
+
isColor=True,
|
102 |
+
)
|
103 |
+
[writer.write(np.zeros((10, 10, 3), np.uint8)) for _ in range(30)]
|
104 |
+
writer.release()
|
105 |
+
if os.path.isfile(filename):
|
106 |
+
return True
|
107 |
+
return False
|
108 |
+
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
mp.set_start_method("spawn", force=True)
|
112 |
+
args = get_parser().parse_args()
|
113 |
+
setup_logger(name="fvcore")
|
114 |
+
logger = setup_logger()
|
115 |
+
logger.info("Arguments: " + str(args))
|
116 |
+
|
117 |
+
cfg = setup_cfg(args)
|
118 |
+
|
119 |
+
demo = VisualizationDemo(cfg, args)
|
120 |
+
|
121 |
+
if args.input:
|
122 |
+
if len(args.input) == 1:
|
123 |
+
args.input = glob.glob(os.path.expanduser(args.input[0]))
|
124 |
+
assert args.input, "The input path(s) was not found"
|
125 |
+
for path in tqdm.tqdm(args.input, disable=not args.output):
|
126 |
+
img = read_image(path, format="BGR")
|
127 |
+
start_time = time.time()
|
128 |
+
predictions, visualized_output = demo.run_on_image(img)
|
129 |
+
logger.info(
|
130 |
+
"{}: {} in {:.2f}s".format(
|
131 |
+
path,
|
132 |
+
"detected {} instances".format(len(predictions["instances"]))
|
133 |
+
if "instances" in predictions
|
134 |
+
else "finished",
|
135 |
+
time.time() - start_time,
|
136 |
+
)
|
137 |
+
)
|
138 |
+
|
139 |
+
if args.output:
|
140 |
+
if os.path.isdir(args.output):
|
141 |
+
assert os.path.isdir(args.output), args.output
|
142 |
+
out_filename = os.path.join(args.output, os.path.basename(path))
|
143 |
+
else:
|
144 |
+
assert len(args.input) == 1, "Please specify a directory with args.output"
|
145 |
+
out_filename = args.output
|
146 |
+
visualized_output.save(out_filename)
|
147 |
+
else:
|
148 |
+
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
|
149 |
+
cv2.imshow(WINDOW_NAME, visualized_output.get_image()[:, :, ::-1])
|
150 |
+
if cv2.waitKey(0) == 27:
|
151 |
+
break # esc to quit
|
152 |
+
elif args.webcam:
|
153 |
+
assert args.input is None, "Cannot have both --input and --webcam!"
|
154 |
+
assert args.output is None, "output not yet supported with --webcam!"
|
155 |
+
cam = cv2.VideoCapture(0)
|
156 |
+
for vis in tqdm.tqdm(demo.run_on_video(cam)):
|
157 |
+
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
|
158 |
+
cv2.imshow(WINDOW_NAME, vis)
|
159 |
+
if cv2.waitKey(1) == 27:
|
160 |
+
break # esc to quit
|
161 |
+
cam.release()
|
162 |
+
cv2.destroyAllWindows()
|
163 |
+
elif args.video_input:
|
164 |
+
video = cv2.VideoCapture(args.video_input)
|
165 |
+
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
166 |
+
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
167 |
+
frames_per_second = video.get(cv2.CAP_PROP_FPS)
|
168 |
+
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
169 |
+
basename = os.path.basename(args.video_input)
|
170 |
+
codec, file_ext = (
|
171 |
+
("x264", ".mkv") if test_opencv_video_format("x264", ".mkv") else ("mp4v", ".mp4")
|
172 |
+
)
|
173 |
+
if codec == ".mp4v":
|
174 |
+
warnings.warn("x264 codec not available, switching to mp4v")
|
175 |
+
if args.output:
|
176 |
+
if os.path.isdir(args.output):
|
177 |
+
output_fname = os.path.join(args.output, basename)
|
178 |
+
output_fname = os.path.splitext(output_fname)[0] + file_ext
|
179 |
+
else:
|
180 |
+
output_fname = args.output
|
181 |
+
assert not os.path.isfile(output_fname), output_fname
|
182 |
+
output_file = cv2.VideoWriter(
|
183 |
+
filename=output_fname,
|
184 |
+
# some installation of opencv may not support x264 (due to its license),
|
185 |
+
# you can try other format (e.g. MPEG)
|
186 |
+
fourcc=cv2.VideoWriter_fourcc(*codec),
|
187 |
+
fps=float(frames_per_second),
|
188 |
+
frameSize=(width, height),
|
189 |
+
isColor=True,
|
190 |
+
)
|
191 |
+
assert os.path.isfile(args.video_input)
|
192 |
+
for vis_frame in tqdm.tqdm(demo.run_on_video(video), total=num_frames):
|
193 |
+
if args.output:
|
194 |
+
output_file.write(vis_frame)
|
195 |
+
else:
|
196 |
+
cv2.namedWindow(basename, cv2.WINDOW_NORMAL)
|
197 |
+
cv2.imshow(basename, vis_frame)
|
198 |
+
if cv2.waitKey(1) == 27:
|
199 |
+
break # esc to quit
|
200 |
+
video.release()
|
201 |
+
if args.output:
|
202 |
+
output_file.release()
|
203 |
+
else:
|
204 |
+
cv2.destroyAllWindows()
|
detic/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from .modeling.meta_arch import custom_rcnn
|
3 |
+
from .modeling.roi_heads import detic_roi_heads
|
4 |
+
from .modeling.roi_heads import res5_roi_heads
|
5 |
+
from .modeling.backbone import swintransformer
|
6 |
+
from .modeling.backbone import timm
|
7 |
+
|
8 |
+
|
9 |
+
from .data.datasets import lvis_v1
|
10 |
+
from .data.datasets import imagenet
|
11 |
+
from .data.datasets import cc
|
12 |
+
from .data.datasets import objects365
|
13 |
+
from .data.datasets import oid
|
14 |
+
from .data.datasets import coco_zeroshot
|
15 |
+
|
16 |
+
try:
|
17 |
+
from .modeling.meta_arch import d2_deformable_detr
|
18 |
+
except:
|
19 |
+
pass
|
detic/config.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from detectron2.config import CfgNode as CN
|
3 |
+
|
4 |
+
def add_detic_config(cfg):
|
5 |
+
_C = cfg
|
6 |
+
|
7 |
+
_C.WITH_IMAGE_LABELS = False # Turn on co-training with classification data
|
8 |
+
|
9 |
+
# Open-vocabulary classifier
|
10 |
+
_C.MODEL.ROI_BOX_HEAD.USE_ZEROSHOT_CLS = False # Use fixed classifier for open-vocabulary detection
|
11 |
+
_C.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = 'datasets/metadata/lvis_v1_clip_a+cname.npy'
|
12 |
+
_C.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_DIM = 512
|
13 |
+
_C.MODEL.ROI_BOX_HEAD.NORM_WEIGHT = True
|
14 |
+
_C.MODEL.ROI_BOX_HEAD.NORM_TEMP = 50.0
|
15 |
+
_C.MODEL.ROI_BOX_HEAD.IGNORE_ZERO_CATS = False
|
16 |
+
_C.MODEL.ROI_BOX_HEAD.USE_BIAS = 0.0 # >= 0: not use
|
17 |
+
|
18 |
+
_C.MODEL.ROI_BOX_HEAD.MULT_PROPOSAL_SCORE = False # CenterNet2
|
19 |
+
_C.MODEL.ROI_BOX_HEAD.USE_SIGMOID_CE = False
|
20 |
+
_C.MODEL.ROI_BOX_HEAD.PRIOR_PROB = 0.01
|
21 |
+
_C.MODEL.ROI_BOX_HEAD.USE_FED_LOSS = False # Federated Loss
|
22 |
+
_C.MODEL.ROI_BOX_HEAD.CAT_FREQ_PATH = \
|
23 |
+
'datasets/metadata/lvis_v1_train_cat_info.json'
|
24 |
+
_C.MODEL.ROI_BOX_HEAD.FED_LOSS_NUM_CAT = 50
|
25 |
+
_C.MODEL.ROI_BOX_HEAD.FED_LOSS_FREQ_WEIGHT = 0.5
|
26 |
+
|
27 |
+
# Classification data configs
|
28 |
+
_C.MODEL.ROI_BOX_HEAD.IMAGE_LABEL_LOSS = 'max_size' # max, softmax, sum
|
29 |
+
_C.MODEL.ROI_BOX_HEAD.IMAGE_LOSS_WEIGHT = 0.1
|
30 |
+
_C.MODEL.ROI_BOX_HEAD.IMAGE_BOX_SIZE = 1.0
|
31 |
+
_C.MODEL.ROI_BOX_HEAD.ADD_IMAGE_BOX = False # Used for image-box loss and caption loss
|
32 |
+
_C.MODEL.ROI_BOX_HEAD.WS_NUM_PROPS = 128 # num proposals for image-labeled data
|
33 |
+
_C.MODEL.ROI_BOX_HEAD.WITH_SOFTMAX_PROP = False # Used for WSDDN
|
34 |
+
_C.MODEL.ROI_BOX_HEAD.CAPTION_WEIGHT = 1.0 # Caption loss weight
|
35 |
+
_C.MODEL.ROI_BOX_HEAD.NEG_CAP_WEIGHT = 0.125 # Caption loss hyper-parameter
|
36 |
+
_C.MODEL.ROI_BOX_HEAD.ADD_FEATURE_TO_PROP = False # Used for WSDDN
|
37 |
+
_C.MODEL.ROI_BOX_HEAD.SOFTMAX_WEAK_LOSS = False # Used when USE_SIGMOID_CE is False
|
38 |
+
|
39 |
+
_C.MODEL.ROI_HEADS.MASK_WEIGHT = 1.0
|
40 |
+
_C.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = False # For demo only
|
41 |
+
|
42 |
+
# Caption losses
|
43 |
+
_C.MODEL.CAP_BATCH_RATIO = 4 # Ratio between detection data and caption data
|
44 |
+
_C.MODEL.WITH_CAPTION = False
|
45 |
+
_C.MODEL.SYNC_CAPTION_BATCH = False # synchronize across GPUs to enlarge # "classes"
|
46 |
+
|
47 |
+
# dynamic class sampling when training with 21K classes
|
48 |
+
_C.MODEL.DYNAMIC_CLASSIFIER = False
|
49 |
+
_C.MODEL.NUM_SAMPLE_CATS = 50
|
50 |
+
|
51 |
+
# Different classifiers in testing, used in cross-dataset evaluation
|
52 |
+
_C.MODEL.RESET_CLS_TESTS = False
|
53 |
+
_C.MODEL.TEST_CLASSIFIERS = []
|
54 |
+
_C.MODEL.TEST_NUM_CLASSES = []
|
55 |
+
|
56 |
+
# Backbones
|
57 |
+
_C.MODEL.SWIN = CN()
|
58 |
+
_C.MODEL.SWIN.SIZE = 'T' # 'T', 'S', 'B'
|
59 |
+
_C.MODEL.SWIN.USE_CHECKPOINT = False
|
60 |
+
_C.MODEL.SWIN.OUT_FEATURES = (1, 2, 3) # FPN stride 8 - 32
|
61 |
+
|
62 |
+
_C.MODEL.TIMM = CN()
|
63 |
+
_C.MODEL.TIMM.BASE_NAME = 'resnet50'
|
64 |
+
_C.MODEL.TIMM.OUT_LEVELS = (3, 4, 5)
|
65 |
+
_C.MODEL.TIMM.NORM = 'FrozenBN'
|
66 |
+
_C.MODEL.TIMM.FREEZE_AT = 0
|
67 |
+
_C.MODEL.DATASET_LOSS_WEIGHT = []
|
68 |
+
|
69 |
+
# Multi-dataset dataloader
|
70 |
+
_C.DATALOADER.DATASET_RATIO = [1, 1] # sample ratio
|
71 |
+
_C.DATALOADER.USE_RFS = [False, False]
|
72 |
+
_C.DATALOADER.MULTI_DATASET_GROUPING = False # Always true when multi-dataset is enabled
|
73 |
+
_C.DATALOADER.DATASET_ANN = ['box', 'box'] # Annotation type of each dataset
|
74 |
+
_C.DATALOADER.USE_DIFF_BS_SIZE = False # Use different batchsize for each dataset
|
75 |
+
_C.DATALOADER.DATASET_BS = [8, 32] # Used when USE_DIFF_BS_SIZE is on
|
76 |
+
_C.DATALOADER.DATASET_INPUT_SIZE = [896, 384] # Used when USE_DIFF_BS_SIZE is on
|
77 |
+
_C.DATALOADER.DATASET_INPUT_SCALE = [(0.1, 2.0), (0.5, 1.5)] # Used when USE_DIFF_BS_SIZE is on
|
78 |
+
_C.DATALOADER.DATASET_MIN_SIZES = [(640, 800), (320, 400)] # Used when USE_DIFF_BS_SIZE is on
|
79 |
+
_C.DATALOADER.DATASET_MAX_SIZES = [1333, 667] # Used when USE_DIFF_BS_SIZE is on
|
80 |
+
_C.DATALOADER.USE_TAR_DATASET = False # for ImageNet-21K, directly reading from unziped files
|
81 |
+
_C.DATALOADER.TARFILE_PATH = 'datasets/imagenet/metadata-22k/tar_files.npy'
|
82 |
+
_C.DATALOADER.TAR_INDEX_DIR = 'datasets/imagenet/metadata-22k/tarindex_npy'
|
83 |
+
|
84 |
+
_C.SOLVER.USE_CUSTOM_SOLVER = False
|
85 |
+
_C.SOLVER.OPTIMIZER = 'SGD'
|
86 |
+
_C.SOLVER.BACKBONE_MULTIPLIER = 1.0 # Used in DETR
|
87 |
+
_C.SOLVER.CUSTOM_MULTIPLIER = 1.0 # Used in DETR
|
88 |
+
_C.SOLVER.CUSTOM_MULTIPLIER_NAME = [] # Used in DETR
|
89 |
+
|
90 |
+
# Deformable DETR
|
91 |
+
_C.MODEL.DETR = CN()
|
92 |
+
_C.MODEL.DETR.NUM_CLASSES = 80
|
93 |
+
_C.MODEL.DETR.FROZEN_WEIGHTS = '' # For Segmentation
|
94 |
+
_C.MODEL.DETR.GIOU_WEIGHT = 2.0
|
95 |
+
_C.MODEL.DETR.L1_WEIGHT = 5.0
|
96 |
+
_C.MODEL.DETR.DEEP_SUPERVISION = True
|
97 |
+
_C.MODEL.DETR.NO_OBJECT_WEIGHT = 0.1
|
98 |
+
_C.MODEL.DETR.CLS_WEIGHT = 2.0
|
99 |
+
_C.MODEL.DETR.NUM_FEATURE_LEVELS = 4
|
100 |
+
_C.MODEL.DETR.TWO_STAGE = False
|
101 |
+
_C.MODEL.DETR.WITH_BOX_REFINE = False
|
102 |
+
_C.MODEL.DETR.FOCAL_ALPHA = 0.25
|
103 |
+
_C.MODEL.DETR.NHEADS = 8
|
104 |
+
_C.MODEL.DETR.DROPOUT = 0.1
|
105 |
+
_C.MODEL.DETR.DIM_FEEDFORWARD = 2048
|
106 |
+
_C.MODEL.DETR.ENC_LAYERS = 6
|
107 |
+
_C.MODEL.DETR.DEC_LAYERS = 6
|
108 |
+
_C.MODEL.DETR.PRE_NORM = False
|
109 |
+
_C.MODEL.DETR.HIDDEN_DIM = 256
|
110 |
+
_C.MODEL.DETR.NUM_OBJECT_QUERIES = 100
|
111 |
+
|
112 |
+
_C.MODEL.DETR.USE_FED_LOSS = False
|
113 |
+
_C.MODEL.DETR.WEAK_WEIGHT = 0.1
|
114 |
+
|
115 |
+
_C.INPUT.CUSTOM_AUG = ''
|
116 |
+
_C.INPUT.TRAIN_SIZE = 640
|
117 |
+
_C.INPUT.TEST_SIZE = 640
|
118 |
+
_C.INPUT.SCALE_RANGE = (0.1, 2.)
|
119 |
+
# 'default' for fixed short/ long edge, 'square' for max size=INPUT.SIZE
|
120 |
+
_C.INPUT.TEST_INPUT_TYPE = 'default'
|
121 |
+
|
122 |
+
_C.FIND_UNUSED_PARAM = True
|
123 |
+
_C.EVAL_PRED_AR = False
|
124 |
+
_C.EVAL_PROPOSAL_AR = False
|
125 |
+
_C.EVAL_CAT_SPEC_AR = False
|
126 |
+
_C.IS_DEBUG = False
|
127 |
+
_C.QUICK_DEBUG = False
|
128 |
+
_C.FP16 = False
|
129 |
+
_C.EVAL_AP_FIX = False
|
130 |
+
_C.GEN_PSEDO_LABELS = False
|
131 |
+
_C.SAVE_DEBUG_PATH = 'output/save_debug/'
|
detic/custom_solver.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
from enum import Enum
|
3 |
+
import itertools
|
4 |
+
from typing import Any, Callable, Dict, Iterable, List, Set, Type, Union
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from detectron2.config import CfgNode
|
8 |
+
|
9 |
+
from detectron2.solver.build import maybe_add_gradient_clipping
|
10 |
+
|
11 |
+
def match_name_keywords(n, name_keywords):
|
12 |
+
out = False
|
13 |
+
for b in name_keywords:
|
14 |
+
if b in n:
|
15 |
+
out = True
|
16 |
+
break
|
17 |
+
return out
|
18 |
+
|
19 |
+
def build_custom_optimizer(cfg: CfgNode, model: torch.nn.Module) -> torch.optim.Optimizer:
|
20 |
+
"""
|
21 |
+
Build an optimizer from config.
|
22 |
+
"""
|
23 |
+
params: List[Dict[str, Any]] = []
|
24 |
+
memo: Set[torch.nn.parameter.Parameter] = set()
|
25 |
+
custom_multiplier_name = cfg.SOLVER.CUSTOM_MULTIPLIER_NAME
|
26 |
+
optimizer_type = cfg.SOLVER.OPTIMIZER
|
27 |
+
for key, value in model.named_parameters(recurse=True):
|
28 |
+
if not value.requires_grad:
|
29 |
+
continue
|
30 |
+
# Avoid duplicating parameters
|
31 |
+
if value in memo:
|
32 |
+
continue
|
33 |
+
memo.add(value)
|
34 |
+
lr = cfg.SOLVER.BASE_LR
|
35 |
+
weight_decay = cfg.SOLVER.WEIGHT_DECAY
|
36 |
+
if "backbone" in key:
|
37 |
+
lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER
|
38 |
+
if match_name_keywords(key, custom_multiplier_name):
|
39 |
+
lr = lr * cfg.SOLVER.CUSTOM_MULTIPLIER
|
40 |
+
print('Costum LR', key, lr)
|
41 |
+
param = {"params": [value], "lr": lr}
|
42 |
+
if optimizer_type != 'ADAMW':
|
43 |
+
param['weight_decay'] = weight_decay
|
44 |
+
params += [param]
|
45 |
+
|
46 |
+
def maybe_add_full_model_gradient_clipping(optim): # optim: the optimizer class
|
47 |
+
# detectron2 doesn't have full model gradient clipping now
|
48 |
+
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
|
49 |
+
enable = (
|
50 |
+
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
|
51 |
+
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
|
52 |
+
and clip_norm_val > 0.0
|
53 |
+
)
|
54 |
+
|
55 |
+
class FullModelGradientClippingOptimizer(optim):
|
56 |
+
def step(self, closure=None):
|
57 |
+
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
|
58 |
+
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
|
59 |
+
super().step(closure=closure)
|
60 |
+
|
61 |
+
return FullModelGradientClippingOptimizer if enable else optim
|
62 |
+
|
63 |
+
|
64 |
+
if optimizer_type == 'SGD':
|
65 |
+
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
|
66 |
+
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM,
|
67 |
+
nesterov=cfg.SOLVER.NESTEROV
|
68 |
+
)
|
69 |
+
elif optimizer_type == 'ADAMW':
|
70 |
+
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
|
71 |
+
params, cfg.SOLVER.BASE_LR,
|
72 |
+
weight_decay=cfg.SOLVER.WEIGHT_DECAY
|
73 |
+
)
|
74 |
+
else:
|
75 |
+
raise NotImplementedError(f"no optimizer type {optimizer_type}")
|
76 |
+
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
|
77 |
+
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
|
78 |
+
return optimizer
|
detic/data/custom_build_augmentation.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
import numpy as np
|
4 |
+
import pycocotools.mask as mask_util
|
5 |
+
import torch
|
6 |
+
from fvcore.common.file_io import PathManager
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
|
10 |
+
from detectron2.data import transforms as T
|
11 |
+
from .transforms.custom_augmentation_impl import EfficientDetResizeCrop
|
12 |
+
|
13 |
+
def build_custom_augmentation(cfg, is_train, scale=None, size=None, \
|
14 |
+
min_size=None, max_size=None):
|
15 |
+
"""
|
16 |
+
Create a list of default :class:`Augmentation` from config.
|
17 |
+
Now it includes resizing and flipping.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
list[Augmentation]
|
21 |
+
"""
|
22 |
+
if cfg.INPUT.CUSTOM_AUG == 'ResizeShortestEdge':
|
23 |
+
if is_train:
|
24 |
+
min_size = cfg.INPUT.MIN_SIZE_TRAIN if min_size is None else min_size
|
25 |
+
max_size = cfg.INPUT.MAX_SIZE_TRAIN if max_size is None else max_size
|
26 |
+
sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
|
27 |
+
else:
|
28 |
+
min_size = cfg.INPUT.MIN_SIZE_TEST
|
29 |
+
max_size = cfg.INPUT.MAX_SIZE_TEST
|
30 |
+
sample_style = "choice"
|
31 |
+
augmentation = [T.ResizeShortestEdge(min_size, max_size, sample_style)]
|
32 |
+
elif cfg.INPUT.CUSTOM_AUG == 'EfficientDetResizeCrop':
|
33 |
+
if is_train:
|
34 |
+
scale = cfg.INPUT.SCALE_RANGE if scale is None else scale
|
35 |
+
size = cfg.INPUT.TRAIN_SIZE if size is None else size
|
36 |
+
else:
|
37 |
+
scale = (1, 1)
|
38 |
+
size = cfg.INPUT.TEST_SIZE
|
39 |
+
augmentation = [EfficientDetResizeCrop(size, scale)]
|
40 |
+
else:
|
41 |
+
assert 0, cfg.INPUT.CUSTOM_AUG
|
42 |
+
|
43 |
+
if is_train:
|
44 |
+
augmentation.append(T.RandomFlip())
|
45 |
+
return augmentation
|
46 |
+
|
47 |
+
|
48 |
+
build_custom_transform_gen = build_custom_augmentation
|
49 |
+
"""
|
50 |
+
Alias for backward-compatibility.
|
51 |
+
"""
|
detic/data/custom_dataset_dataloader.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Part of the code is from https://github.com/xingyizhou/UniDet/blob/master/projects/UniDet/unidet/data/multi_dataset_dataloader.py (Apache-2.0 License)
|
3 |
+
import copy
|
4 |
+
import logging
|
5 |
+
import numpy as np
|
6 |
+
import operator
|
7 |
+
import torch
|
8 |
+
import torch.utils.data
|
9 |
+
import json
|
10 |
+
from detectron2.utils.comm import get_world_size
|
11 |
+
from detectron2.utils.logger import _log_api_usage, log_first_n
|
12 |
+
|
13 |
+
from detectron2.config import configurable
|
14 |
+
from detectron2.data import samplers
|
15 |
+
from torch.utils.data.sampler import BatchSampler, Sampler
|
16 |
+
from detectron2.data.common import DatasetFromList, MapDataset
|
17 |
+
from detectron2.data.dataset_mapper import DatasetMapper
|
18 |
+
from detectron2.data.build import get_detection_dataset_dicts, build_batch_data_loader
|
19 |
+
from detectron2.data.samplers import TrainingSampler, RepeatFactorTrainingSampler
|
20 |
+
from detectron2.data.build import worker_init_reset_seed, print_instances_class_histogram
|
21 |
+
from detectron2.data.build import filter_images_with_only_crowd_annotations
|
22 |
+
from detectron2.data.build import filter_images_with_few_keypoints
|
23 |
+
from detectron2.data.build import check_metadata_consistency
|
24 |
+
from detectron2.data.catalog import MetadataCatalog, DatasetCatalog
|
25 |
+
from detectron2.utils import comm
|
26 |
+
import itertools
|
27 |
+
import math
|
28 |
+
from collections import defaultdict
|
29 |
+
from typing import Optional
|
30 |
+
|
31 |
+
|
32 |
+
def _custom_train_loader_from_config(cfg, mapper=None, *, dataset=None, sampler=None):
|
33 |
+
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
|
34 |
+
if 'MultiDataset' in sampler_name:
|
35 |
+
dataset_dicts = get_detection_dataset_dicts_with_source(
|
36 |
+
cfg.DATASETS.TRAIN,
|
37 |
+
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
|
38 |
+
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
|
39 |
+
if cfg.MODEL.KEYPOINT_ON else 0,
|
40 |
+
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
|
41 |
+
)
|
42 |
+
else:
|
43 |
+
dataset_dicts = get_detection_dataset_dicts(
|
44 |
+
cfg.DATASETS.TRAIN,
|
45 |
+
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
|
46 |
+
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
|
47 |
+
if cfg.MODEL.KEYPOINT_ON else 0,
|
48 |
+
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
|
49 |
+
)
|
50 |
+
|
51 |
+
if mapper is None:
|
52 |
+
mapper = DatasetMapper(cfg, True)
|
53 |
+
|
54 |
+
if sampler is not None:
|
55 |
+
pass
|
56 |
+
elif sampler_name == "TrainingSampler":
|
57 |
+
sampler = TrainingSampler(len(dataset))
|
58 |
+
elif sampler_name == "MultiDatasetSampler":
|
59 |
+
sampler = MultiDatasetSampler(
|
60 |
+
dataset_dicts,
|
61 |
+
dataset_ratio = cfg.DATALOADER.DATASET_RATIO,
|
62 |
+
use_rfs = cfg.DATALOADER.USE_RFS,
|
63 |
+
dataset_ann = cfg.DATALOADER.DATASET_ANN,
|
64 |
+
repeat_threshold = cfg.DATALOADER.REPEAT_THRESHOLD,
|
65 |
+
)
|
66 |
+
elif sampler_name == "RepeatFactorTrainingSampler":
|
67 |
+
repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
|
68 |
+
dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD
|
69 |
+
)
|
70 |
+
sampler = RepeatFactorTrainingSampler(repeat_factors)
|
71 |
+
else:
|
72 |
+
raise ValueError("Unknown training sampler: {}".format(sampler_name))
|
73 |
+
|
74 |
+
return {
|
75 |
+
"dataset": dataset_dicts,
|
76 |
+
"sampler": sampler,
|
77 |
+
"mapper": mapper,
|
78 |
+
"total_batch_size": cfg.SOLVER.IMS_PER_BATCH,
|
79 |
+
"aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING,
|
80 |
+
"num_workers": cfg.DATALOADER.NUM_WORKERS,
|
81 |
+
'multi_dataset_grouping': cfg.DATALOADER.MULTI_DATASET_GROUPING,
|
82 |
+
'use_diff_bs_size': cfg.DATALOADER.USE_DIFF_BS_SIZE,
|
83 |
+
'dataset_bs': cfg.DATALOADER.DATASET_BS,
|
84 |
+
'num_datasets': len(cfg.DATASETS.TRAIN)
|
85 |
+
}
|
86 |
+
|
87 |
+
|
88 |
+
@configurable(from_config=_custom_train_loader_from_config)
|
89 |
+
def build_custom_train_loader(
|
90 |
+
dataset, *, mapper, sampler,
|
91 |
+
total_batch_size=16,
|
92 |
+
aspect_ratio_grouping=True,
|
93 |
+
num_workers=0,
|
94 |
+
num_datasets=1,
|
95 |
+
multi_dataset_grouping=False,
|
96 |
+
use_diff_bs_size=False,
|
97 |
+
dataset_bs=[]
|
98 |
+
):
|
99 |
+
"""
|
100 |
+
Modified from detectron2.data.build.build_custom_train_loader, but supports
|
101 |
+
different samplers
|
102 |
+
"""
|
103 |
+
if isinstance(dataset, list):
|
104 |
+
dataset = DatasetFromList(dataset, copy=False)
|
105 |
+
if mapper is not None:
|
106 |
+
dataset = MapDataset(dataset, mapper)
|
107 |
+
if sampler is None:
|
108 |
+
sampler = TrainingSampler(len(dataset))
|
109 |
+
assert isinstance(sampler, torch.utils.data.sampler.Sampler)
|
110 |
+
if multi_dataset_grouping:
|
111 |
+
return build_multi_dataset_batch_data_loader(
|
112 |
+
use_diff_bs_size,
|
113 |
+
dataset_bs,
|
114 |
+
dataset,
|
115 |
+
sampler,
|
116 |
+
total_batch_size,
|
117 |
+
num_datasets=num_datasets,
|
118 |
+
num_workers=num_workers,
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
return build_batch_data_loader(
|
122 |
+
dataset,
|
123 |
+
sampler,
|
124 |
+
total_batch_size,
|
125 |
+
aspect_ratio_grouping=aspect_ratio_grouping,
|
126 |
+
num_workers=num_workers,
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
def build_multi_dataset_batch_data_loader(
|
131 |
+
use_diff_bs_size, dataset_bs,
|
132 |
+
dataset, sampler, total_batch_size, num_datasets, num_workers=0
|
133 |
+
):
|
134 |
+
"""
|
135 |
+
"""
|
136 |
+
world_size = get_world_size()
|
137 |
+
assert (
|
138 |
+
total_batch_size > 0 and total_batch_size % world_size == 0
|
139 |
+
), "Total batch size ({}) must be divisible by the number of gpus ({}).".format(
|
140 |
+
total_batch_size, world_size
|
141 |
+
)
|
142 |
+
|
143 |
+
batch_size = total_batch_size // world_size
|
144 |
+
data_loader = torch.utils.data.DataLoader(
|
145 |
+
dataset,
|
146 |
+
sampler=sampler,
|
147 |
+
num_workers=num_workers,
|
148 |
+
batch_sampler=None,
|
149 |
+
collate_fn=operator.itemgetter(0), # don't batch, but yield individual elements
|
150 |
+
worker_init_fn=worker_init_reset_seed,
|
151 |
+
) # yield individual mapped dict
|
152 |
+
if use_diff_bs_size:
|
153 |
+
return DIFFMDAspectRatioGroupedDataset(
|
154 |
+
data_loader, dataset_bs, num_datasets)
|
155 |
+
else:
|
156 |
+
return MDAspectRatioGroupedDataset(
|
157 |
+
data_loader, batch_size, num_datasets)
|
158 |
+
|
159 |
+
|
160 |
+
def get_detection_dataset_dicts_with_source(
|
161 |
+
dataset_names, filter_empty=True, min_keypoints=0, proposal_files=None
|
162 |
+
):
|
163 |
+
assert len(dataset_names)
|
164 |
+
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
|
165 |
+
for dataset_name, dicts in zip(dataset_names, dataset_dicts):
|
166 |
+
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
|
167 |
+
|
168 |
+
for source_id, (dataset_name, dicts) in \
|
169 |
+
enumerate(zip(dataset_names, dataset_dicts)):
|
170 |
+
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
|
171 |
+
for d in dicts:
|
172 |
+
d['dataset_source'] = source_id
|
173 |
+
|
174 |
+
if "annotations" in dicts[0]:
|
175 |
+
try:
|
176 |
+
class_names = MetadataCatalog.get(dataset_name).thing_classes
|
177 |
+
check_metadata_consistency("thing_classes", dataset_name)
|
178 |
+
print_instances_class_histogram(dicts, class_names)
|
179 |
+
except AttributeError: # class names are not available for this dataset
|
180 |
+
pass
|
181 |
+
|
182 |
+
assert proposal_files is None
|
183 |
+
|
184 |
+
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
|
185 |
+
|
186 |
+
has_instances = "annotations" in dataset_dicts[0]
|
187 |
+
if filter_empty and has_instances:
|
188 |
+
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts)
|
189 |
+
if min_keypoints > 0 and has_instances:
|
190 |
+
dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints)
|
191 |
+
|
192 |
+
return dataset_dicts
|
193 |
+
|
194 |
+
|
195 |
+
class MultiDatasetSampler(Sampler):
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
dataset_dicts,
|
199 |
+
dataset_ratio,
|
200 |
+
use_rfs,
|
201 |
+
dataset_ann,
|
202 |
+
repeat_threshold=0.001,
|
203 |
+
seed: Optional[int] = None,
|
204 |
+
):
|
205 |
+
"""
|
206 |
+
"""
|
207 |
+
sizes = [0 for _ in range(len(dataset_ratio))]
|
208 |
+
for d in dataset_dicts:
|
209 |
+
sizes[d['dataset_source']] += 1
|
210 |
+
print('dataset sizes', sizes)
|
211 |
+
self.sizes = sizes
|
212 |
+
assert len(dataset_ratio) == len(sizes), \
|
213 |
+
'length of dataset ratio {} should be equal to number if dataset {}'.format(
|
214 |
+
len(dataset_ratio), len(sizes)
|
215 |
+
)
|
216 |
+
if seed is None:
|
217 |
+
seed = comm.shared_random_seed()
|
218 |
+
self._seed = int(seed)
|
219 |
+
self._rank = comm.get_rank()
|
220 |
+
self._world_size = comm.get_world_size()
|
221 |
+
|
222 |
+
self.dataset_ids = torch.tensor(
|
223 |
+
[d['dataset_source'] for d in dataset_dicts], dtype=torch.long)
|
224 |
+
|
225 |
+
dataset_weight = [torch.ones(s) * max(sizes) / s * r / sum(dataset_ratio) \
|
226 |
+
for i, (r, s) in enumerate(zip(dataset_ratio, sizes))]
|
227 |
+
dataset_weight = torch.cat(dataset_weight)
|
228 |
+
|
229 |
+
rfs_factors = []
|
230 |
+
st = 0
|
231 |
+
for i, s in enumerate(sizes):
|
232 |
+
if use_rfs[i]:
|
233 |
+
if dataset_ann[i] == 'box':
|
234 |
+
rfs_func = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency
|
235 |
+
else:
|
236 |
+
rfs_func = repeat_factors_from_tag_frequency
|
237 |
+
rfs_factor = rfs_func(
|
238 |
+
dataset_dicts[st: st + s],
|
239 |
+
repeat_thresh=repeat_threshold)
|
240 |
+
rfs_factor = rfs_factor * (s / rfs_factor.sum())
|
241 |
+
else:
|
242 |
+
rfs_factor = torch.ones(s)
|
243 |
+
rfs_factors.append(rfs_factor)
|
244 |
+
st = st + s
|
245 |
+
rfs_factors = torch.cat(rfs_factors)
|
246 |
+
|
247 |
+
self.weights = dataset_weight * rfs_factors
|
248 |
+
self.sample_epoch_size = len(self.weights)
|
249 |
+
|
250 |
+
def __iter__(self):
|
251 |
+
start = self._rank
|
252 |
+
yield from itertools.islice(
|
253 |
+
self._infinite_indices(), start, None, self._world_size)
|
254 |
+
|
255 |
+
|
256 |
+
def _infinite_indices(self):
|
257 |
+
g = torch.Generator()
|
258 |
+
g.manual_seed(self._seed)
|
259 |
+
while True:
|
260 |
+
ids = torch.multinomial(
|
261 |
+
self.weights, self.sample_epoch_size, generator=g,
|
262 |
+
replacement=True)
|
263 |
+
nums = [(self.dataset_ids[ids] == i).sum().int().item() \
|
264 |
+
for i in range(len(self.sizes))]
|
265 |
+
yield from ids
|
266 |
+
|
267 |
+
|
268 |
+
class MDAspectRatioGroupedDataset(torch.utils.data.IterableDataset):
|
269 |
+
def __init__(self, dataset, batch_size, num_datasets):
|
270 |
+
"""
|
271 |
+
"""
|
272 |
+
self.dataset = dataset
|
273 |
+
self.batch_size = batch_size
|
274 |
+
self._buckets = [[] for _ in range(2 * num_datasets)]
|
275 |
+
|
276 |
+
def __iter__(self):
|
277 |
+
for d in self.dataset:
|
278 |
+
w, h = d["width"], d["height"]
|
279 |
+
aspect_ratio_bucket_id = 0 if w > h else 1
|
280 |
+
bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id
|
281 |
+
bucket = self._buckets[bucket_id]
|
282 |
+
bucket.append(d)
|
283 |
+
if len(bucket) == self.batch_size:
|
284 |
+
yield bucket[:]
|
285 |
+
del bucket[:]
|
286 |
+
|
287 |
+
|
288 |
+
class DIFFMDAspectRatioGroupedDataset(torch.utils.data.IterableDataset):
|
289 |
+
def __init__(self, dataset, batch_sizes, num_datasets):
|
290 |
+
"""
|
291 |
+
"""
|
292 |
+
self.dataset = dataset
|
293 |
+
self.batch_sizes = batch_sizes
|
294 |
+
self._buckets = [[] for _ in range(2 * num_datasets)]
|
295 |
+
|
296 |
+
def __iter__(self):
|
297 |
+
for d in self.dataset:
|
298 |
+
w, h = d["width"], d["height"]
|
299 |
+
aspect_ratio_bucket_id = 0 if w > h else 1
|
300 |
+
bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id
|
301 |
+
bucket = self._buckets[bucket_id]
|
302 |
+
bucket.append(d)
|
303 |
+
if len(bucket) == self.batch_sizes[d['dataset_source']]:
|
304 |
+
yield bucket[:]
|
305 |
+
del bucket[:]
|
306 |
+
|
307 |
+
|
308 |
+
def repeat_factors_from_tag_frequency(dataset_dicts, repeat_thresh):
|
309 |
+
"""
|
310 |
+
"""
|
311 |
+
category_freq = defaultdict(int)
|
312 |
+
for dataset_dict in dataset_dicts:
|
313 |
+
cat_ids = dataset_dict['pos_category_ids']
|
314 |
+
for cat_id in cat_ids:
|
315 |
+
category_freq[cat_id] += 1
|
316 |
+
num_images = len(dataset_dicts)
|
317 |
+
for k, v in category_freq.items():
|
318 |
+
category_freq[k] = v / num_images
|
319 |
+
|
320 |
+
category_rep = {
|
321 |
+
cat_id: max(1.0, math.sqrt(repeat_thresh / cat_freq))
|
322 |
+
for cat_id, cat_freq in category_freq.items()
|
323 |
+
}
|
324 |
+
|
325 |
+
rep_factors = []
|
326 |
+
for dataset_dict in dataset_dicts:
|
327 |
+
cat_ids = dataset_dict['pos_category_ids']
|
328 |
+
rep_factor = max({category_rep[cat_id] for cat_id in cat_ids}, default=1.0)
|
329 |
+
rep_factors.append(rep_factor)
|
330 |
+
|
331 |
+
return torch.tensor(rep_factors, dtype=torch.float32)
|
detic/data/custom_dataset_mapper.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
import copy
|
3 |
+
import logging
|
4 |
+
import numpy as np
|
5 |
+
from typing import List, Optional, Union
|
6 |
+
import torch
|
7 |
+
import pycocotools.mask as mask_util
|
8 |
+
|
9 |
+
from detectron2.config import configurable
|
10 |
+
|
11 |
+
from detectron2.data import detection_utils as utils
|
12 |
+
from detectron2.data.detection_utils import transform_keypoint_annotations
|
13 |
+
from detectron2.data import transforms as T
|
14 |
+
from detectron2.data.dataset_mapper import DatasetMapper
|
15 |
+
from detectron2.structures import Boxes, BoxMode, Instances
|
16 |
+
from detectron2.structures import Keypoints, PolygonMasks, BitMasks
|
17 |
+
from fvcore.transforms.transform import TransformList
|
18 |
+
from .custom_build_augmentation import build_custom_augmentation
|
19 |
+
from .tar_dataset import DiskTarDataset
|
20 |
+
|
21 |
+
__all__ = ["CustomDatasetMapper"]
|
22 |
+
|
23 |
+
class CustomDatasetMapper(DatasetMapper):
|
24 |
+
@configurable
|
25 |
+
def __init__(self, is_train: bool,
|
26 |
+
with_ann_type=False,
|
27 |
+
dataset_ann=[],
|
28 |
+
use_diff_bs_size=False,
|
29 |
+
dataset_augs=[],
|
30 |
+
is_debug=False,
|
31 |
+
use_tar_dataset=False,
|
32 |
+
tarfile_path='',
|
33 |
+
tar_index_dir='',
|
34 |
+
**kwargs):
|
35 |
+
"""
|
36 |
+
add image labels
|
37 |
+
"""
|
38 |
+
self.with_ann_type = with_ann_type
|
39 |
+
self.dataset_ann = dataset_ann
|
40 |
+
self.use_diff_bs_size = use_diff_bs_size
|
41 |
+
if self.use_diff_bs_size and is_train:
|
42 |
+
self.dataset_augs = [T.AugmentationList(x) for x in dataset_augs]
|
43 |
+
self.is_debug = is_debug
|
44 |
+
self.use_tar_dataset = use_tar_dataset
|
45 |
+
if self.use_tar_dataset:
|
46 |
+
print('Using tar dataset')
|
47 |
+
self.tar_dataset = DiskTarDataset(tarfile_path, tar_index_dir)
|
48 |
+
super().__init__(is_train, **kwargs)
|
49 |
+
|
50 |
+
|
51 |
+
@classmethod
|
52 |
+
def from_config(cls, cfg, is_train: bool = True):
|
53 |
+
ret = super().from_config(cfg, is_train)
|
54 |
+
ret.update({
|
55 |
+
'with_ann_type': cfg.WITH_IMAGE_LABELS,
|
56 |
+
'dataset_ann': cfg.DATALOADER.DATASET_ANN,
|
57 |
+
'use_diff_bs_size': cfg.DATALOADER.USE_DIFF_BS_SIZE,
|
58 |
+
'is_debug': cfg.IS_DEBUG,
|
59 |
+
'use_tar_dataset': cfg.DATALOADER.USE_TAR_DATASET,
|
60 |
+
'tarfile_path': cfg.DATALOADER.TARFILE_PATH,
|
61 |
+
'tar_index_dir': cfg.DATALOADER.TAR_INDEX_DIR,
|
62 |
+
})
|
63 |
+
if ret['use_diff_bs_size'] and is_train:
|
64 |
+
if cfg.INPUT.CUSTOM_AUG == 'EfficientDetResizeCrop':
|
65 |
+
dataset_scales = cfg.DATALOADER.DATASET_INPUT_SCALE
|
66 |
+
dataset_sizes = cfg.DATALOADER.DATASET_INPUT_SIZE
|
67 |
+
ret['dataset_augs'] = [
|
68 |
+
build_custom_augmentation(cfg, True, scale, size) \
|
69 |
+
for scale, size in zip(dataset_scales, dataset_sizes)]
|
70 |
+
else:
|
71 |
+
assert cfg.INPUT.CUSTOM_AUG == 'ResizeShortestEdge'
|
72 |
+
min_sizes = cfg.DATALOADER.DATASET_MIN_SIZES
|
73 |
+
max_sizes = cfg.DATALOADER.DATASET_MAX_SIZES
|
74 |
+
ret['dataset_augs'] = [
|
75 |
+
build_custom_augmentation(
|
76 |
+
cfg, True, min_size=mi, max_size=ma) \
|
77 |
+
for mi, ma in zip(min_sizes, max_sizes)]
|
78 |
+
else:
|
79 |
+
ret['dataset_augs'] = []
|
80 |
+
|
81 |
+
return ret
|
82 |
+
|
83 |
+
def __call__(self, dataset_dict):
|
84 |
+
"""
|
85 |
+
include image labels
|
86 |
+
"""
|
87 |
+
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
|
88 |
+
# USER: Write your own image loading if it's not from a file
|
89 |
+
if 'file_name' in dataset_dict:
|
90 |
+
ori_image = utils.read_image(
|
91 |
+
dataset_dict["file_name"], format=self.image_format)
|
92 |
+
else:
|
93 |
+
ori_image, _, _ = self.tar_dataset[dataset_dict["tar_index"]]
|
94 |
+
ori_image = utils._apply_exif_orientation(ori_image)
|
95 |
+
ori_image = utils.convert_PIL_to_numpy(ori_image, self.image_format)
|
96 |
+
utils.check_image_size(dataset_dict, ori_image)
|
97 |
+
|
98 |
+
# USER: Remove if you don't do semantic/panoptic segmentation.
|
99 |
+
if "sem_seg_file_name" in dataset_dict:
|
100 |
+
sem_seg_gt = utils.read_image(
|
101 |
+
dataset_dict.pop("sem_seg_file_name"), "L").squeeze(2)
|
102 |
+
else:
|
103 |
+
sem_seg_gt = None
|
104 |
+
|
105 |
+
if self.is_debug:
|
106 |
+
dataset_dict['dataset_source'] = 0
|
107 |
+
|
108 |
+
not_full_labeled = 'dataset_source' in dataset_dict and \
|
109 |
+
self.with_ann_type and \
|
110 |
+
self.dataset_ann[dataset_dict['dataset_source']] != 'box'
|
111 |
+
|
112 |
+
aug_input = T.AugInput(copy.deepcopy(ori_image), sem_seg=sem_seg_gt)
|
113 |
+
if self.use_diff_bs_size and self.is_train:
|
114 |
+
transforms = \
|
115 |
+
self.dataset_augs[dataset_dict['dataset_source']](aug_input)
|
116 |
+
else:
|
117 |
+
transforms = self.augmentations(aug_input)
|
118 |
+
image, sem_seg_gt = aug_input.image, aug_input.sem_seg
|
119 |
+
|
120 |
+
image_shape = image.shape[:2] # h, w
|
121 |
+
dataset_dict["image"] = torch.as_tensor(
|
122 |
+
np.ascontiguousarray(image.transpose(2, 0, 1)))
|
123 |
+
|
124 |
+
if sem_seg_gt is not None:
|
125 |
+
dataset_dict["sem_seg"] = torch.as_tensor(sem_seg_gt.astype("long"))
|
126 |
+
|
127 |
+
# USER: Remove if you don't use pre-computed proposals.
|
128 |
+
# Most users would not need this feature.
|
129 |
+
if self.proposal_topk is not None:
|
130 |
+
utils.transform_proposals(
|
131 |
+
dataset_dict, image_shape, transforms,
|
132 |
+
proposal_topk=self.proposal_topk
|
133 |
+
)
|
134 |
+
|
135 |
+
if not self.is_train:
|
136 |
+
# USER: Modify this if you want to keep them for some reason.
|
137 |
+
dataset_dict.pop("annotations", None)
|
138 |
+
dataset_dict.pop("sem_seg_file_name", None)
|
139 |
+
return dataset_dict
|
140 |
+
|
141 |
+
if "annotations" in dataset_dict:
|
142 |
+
# USER: Modify this if you want to keep them for some reason.
|
143 |
+
for anno in dataset_dict["annotations"]:
|
144 |
+
if not self.use_instance_mask:
|
145 |
+
anno.pop("segmentation", None)
|
146 |
+
if not self.use_keypoint:
|
147 |
+
anno.pop("keypoints", None)
|
148 |
+
|
149 |
+
# USER: Implement additional transformations if you have other types of data
|
150 |
+
all_annos = [
|
151 |
+
(utils.transform_instance_annotations(
|
152 |
+
obj, transforms, image_shape,
|
153 |
+
keypoint_hflip_indices=self.keypoint_hflip_indices,
|
154 |
+
), obj.get("iscrowd", 0))
|
155 |
+
for obj in dataset_dict.pop("annotations")
|
156 |
+
]
|
157 |
+
annos = [ann[0] for ann in all_annos if ann[1] == 0]
|
158 |
+
instances = utils.annotations_to_instances(
|
159 |
+
annos, image_shape, mask_format=self.instance_mask_format
|
160 |
+
)
|
161 |
+
|
162 |
+
del all_annos
|
163 |
+
if self.recompute_boxes:
|
164 |
+
instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
|
165 |
+
dataset_dict["instances"] = utils.filter_empty_instances(instances)
|
166 |
+
if self.with_ann_type:
|
167 |
+
dataset_dict["pos_category_ids"] = dataset_dict.get(
|
168 |
+
'pos_category_ids', [])
|
169 |
+
dataset_dict["ann_type"] = \
|
170 |
+
self.dataset_ann[dataset_dict['dataset_source']]
|
171 |
+
if self.is_debug and (('pos_category_ids' not in dataset_dict) or \
|
172 |
+
(dataset_dict['pos_category_ids'] == [])):
|
173 |
+
dataset_dict['pos_category_ids'] = [x for x in sorted(set(
|
174 |
+
dataset_dict['instances'].gt_classes.tolist()
|
175 |
+
))]
|
176 |
+
return dataset_dict
|
177 |
+
|
178 |
+
# DETR augmentation
|
179 |
+
def build_transform_gen(cfg, is_train):
|
180 |
+
"""
|
181 |
+
"""
|
182 |
+
if is_train:
|
183 |
+
min_size = cfg.INPUT.MIN_SIZE_TRAIN
|
184 |
+
max_size = cfg.INPUT.MAX_SIZE_TRAIN
|
185 |
+
sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
|
186 |
+
else:
|
187 |
+
min_size = cfg.INPUT.MIN_SIZE_TEST
|
188 |
+
max_size = cfg.INPUT.MAX_SIZE_TEST
|
189 |
+
sample_style = "choice"
|
190 |
+
if sample_style == "range":
|
191 |
+
assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size))
|
192 |
+
|
193 |
+
logger = logging.getLogger(__name__)
|
194 |
+
tfm_gens = []
|
195 |
+
if is_train:
|
196 |
+
tfm_gens.append(T.RandomFlip())
|
197 |
+
tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style))
|
198 |
+
if is_train:
|
199 |
+
logger.info("TransformGens used in training: " + str(tfm_gens))
|
200 |
+
return tfm_gens
|
201 |
+
|
202 |
+
|
203 |
+
class DetrDatasetMapper:
|
204 |
+
"""
|
205 |
+
A callable which takes a dataset dict in Detectron2 Dataset format,
|
206 |
+
and map it into a format used by DETR.
|
207 |
+
The callable currently does the following:
|
208 |
+
1. Read the image from "file_name"
|
209 |
+
2. Applies geometric transforms to the image and annotation
|
210 |
+
3. Find and applies suitable cropping to the image and annotation
|
211 |
+
4. Prepare image and annotation to Tensors
|
212 |
+
"""
|
213 |
+
|
214 |
+
def __init__(self, cfg, is_train=True):
|
215 |
+
if cfg.INPUT.CROP.ENABLED and is_train:
|
216 |
+
self.crop_gen = [
|
217 |
+
T.ResizeShortestEdge([400, 500, 600], sample_style="choice"),
|
218 |
+
T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE),
|
219 |
+
]
|
220 |
+
else:
|
221 |
+
self.crop_gen = None
|
222 |
+
|
223 |
+
self.mask_on = cfg.MODEL.MASK_ON
|
224 |
+
self.tfm_gens = build_transform_gen(cfg, is_train)
|
225 |
+
logging.getLogger(__name__).info(
|
226 |
+
"Full TransformGens used in training: {}, crop: {}".format(str(self.tfm_gens), str(self.crop_gen))
|
227 |
+
)
|
228 |
+
|
229 |
+
self.img_format = cfg.INPUT.FORMAT
|
230 |
+
self.is_train = is_train
|
231 |
+
|
232 |
+
def __call__(self, dataset_dict):
|
233 |
+
"""
|
234 |
+
Args:
|
235 |
+
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
|
236 |
+
Returns:
|
237 |
+
dict: a format that builtin models in detectron2 accept
|
238 |
+
"""
|
239 |
+
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
|
240 |
+
image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
|
241 |
+
utils.check_image_size(dataset_dict, image)
|
242 |
+
|
243 |
+
if self.crop_gen is None:
|
244 |
+
image, transforms = T.apply_transform_gens(self.tfm_gens, image)
|
245 |
+
else:
|
246 |
+
if np.random.rand() > 0.5:
|
247 |
+
image, transforms = T.apply_transform_gens(self.tfm_gens, image)
|
248 |
+
else:
|
249 |
+
image, transforms = T.apply_transform_gens(
|
250 |
+
self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:], image
|
251 |
+
)
|
252 |
+
|
253 |
+
image_shape = image.shape[:2] # h, w
|
254 |
+
|
255 |
+
# Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
|
256 |
+
# but not efficient on large generic data structures due to the use of pickle & mp.Queue.
|
257 |
+
# Therefore it's important to use torch.Tensor.
|
258 |
+
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
|
259 |
+
|
260 |
+
if not self.is_train:
|
261 |
+
# USER: Modify this if you want to keep them for some reason.
|
262 |
+
dataset_dict.pop("annotations", None)
|
263 |
+
return dataset_dict
|
264 |
+
|
265 |
+
if "annotations" in dataset_dict:
|
266 |
+
# USER: Modify this if you want to keep them for some reason.
|
267 |
+
for anno in dataset_dict["annotations"]:
|
268 |
+
if not self.mask_on:
|
269 |
+
anno.pop("segmentation", None)
|
270 |
+
anno.pop("keypoints", None)
|
271 |
+
|
272 |
+
# USER: Implement additional transformations if you have other types of data
|
273 |
+
annos = [
|
274 |
+
utils.transform_instance_annotations(obj, transforms, image_shape)
|
275 |
+
for obj in dataset_dict.pop("annotations")
|
276 |
+
if obj.get("iscrowd", 0) == 0
|
277 |
+
]
|
278 |
+
instances = utils.annotations_to_instances(annos, image_shape)
|
279 |
+
dataset_dict["instances"] = utils.filter_empty_instances(instances)
|
280 |
+
return dataset_dict
|
detic/data/datasets/cc.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
from detectron2.data.datasets.builtin_meta import _get_builtin_metadata
|
6 |
+
from detectron2.data.datasets.lvis import get_lvis_instances_meta
|
7 |
+
from .lvis_v1 import custom_register_lvis_instances
|
8 |
+
|
9 |
+
_CUSTOM_SPLITS = {
|
10 |
+
"cc3m_v1_val": ("cc3m/validation/", "cc3m/val_image_info.json"),
|
11 |
+
"cc3m_v1_train": ("cc3m/training/", "cc3m/train_image_info.json"),
|
12 |
+
"cc3m_v1_train_tags": ("cc3m/training/", "cc3m/train_image_info_tags.json"),
|
13 |
+
|
14 |
+
}
|
15 |
+
|
16 |
+
for key, (image_root, json_file) in _CUSTOM_SPLITS.items():
|
17 |
+
custom_register_lvis_instances(
|
18 |
+
key,
|
19 |
+
get_lvis_instances_meta('lvis_v1'),
|
20 |
+
os.path.join("datasets", json_file) if "://" not in json_file else json_file,
|
21 |
+
os.path.join("datasets", image_root),
|
22 |
+
)
|
23 |
+
|
detic/data/datasets/coco_zeroshot.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import os
|
3 |
+
|
4 |
+
from detectron2.data.datasets.register_coco import register_coco_instances
|
5 |
+
from detectron2.data.datasets.builtin_meta import _get_builtin_metadata
|
6 |
+
from .lvis_v1 import custom_register_lvis_instances
|
7 |
+
|
8 |
+
categories_seen = [
|
9 |
+
{'id': 1, 'name': 'person'},
|
10 |
+
{'id': 2, 'name': 'bicycle'},
|
11 |
+
{'id': 3, 'name': 'car'},
|
12 |
+
{'id': 4, 'name': 'motorcycle'},
|
13 |
+
{'id': 7, 'name': 'train'},
|
14 |
+
{'id': 8, 'name': 'truck'},
|
15 |
+
{'id': 9, 'name': 'boat'},
|
16 |
+
{'id': 15, 'name': 'bench'},
|
17 |
+
{'id': 16, 'name': 'bird'},
|
18 |
+
{'id': 19, 'name': 'horse'},
|
19 |
+
{'id': 20, 'name': 'sheep'},
|
20 |
+
{'id': 23, 'name': 'bear'},
|
21 |
+
{'id': 24, 'name': 'zebra'},
|
22 |
+
{'id': 25, 'name': 'giraffe'},
|
23 |
+
{'id': 27, 'name': 'backpack'},
|
24 |
+
{'id': 31, 'name': 'handbag'},
|
25 |
+
{'id': 33, 'name': 'suitcase'},
|
26 |
+
{'id': 34, 'name': 'frisbee'},
|
27 |
+
{'id': 35, 'name': 'skis'},
|
28 |
+
{'id': 38, 'name': 'kite'},
|
29 |
+
{'id': 42, 'name': 'surfboard'},
|
30 |
+
{'id': 44, 'name': 'bottle'},
|
31 |
+
{'id': 48, 'name': 'fork'},
|
32 |
+
{'id': 50, 'name': 'spoon'},
|
33 |
+
{'id': 51, 'name': 'bowl'},
|
34 |
+
{'id': 52, 'name': 'banana'},
|
35 |
+
{'id': 53, 'name': 'apple'},
|
36 |
+
{'id': 54, 'name': 'sandwich'},
|
37 |
+
{'id': 55, 'name': 'orange'},
|
38 |
+
{'id': 56, 'name': 'broccoli'},
|
39 |
+
{'id': 57, 'name': 'carrot'},
|
40 |
+
{'id': 59, 'name': 'pizza'},
|
41 |
+
{'id': 60, 'name': 'donut'},
|
42 |
+
{'id': 62, 'name': 'chair'},
|
43 |
+
{'id': 65, 'name': 'bed'},
|
44 |
+
{'id': 70, 'name': 'toilet'},
|
45 |
+
{'id': 72, 'name': 'tv'},
|
46 |
+
{'id': 73, 'name': 'laptop'},
|
47 |
+
{'id': 74, 'name': 'mouse'},
|
48 |
+
{'id': 75, 'name': 'remote'},
|
49 |
+
{'id': 78, 'name': 'microwave'},
|
50 |
+
{'id': 79, 'name': 'oven'},
|
51 |
+
{'id': 80, 'name': 'toaster'},
|
52 |
+
{'id': 82, 'name': 'refrigerator'},
|
53 |
+
{'id': 84, 'name': 'book'},
|
54 |
+
{'id': 85, 'name': 'clock'},
|
55 |
+
{'id': 86, 'name': 'vase'},
|
56 |
+
{'id': 90, 'name': 'toothbrush'},
|
57 |
+
]
|
58 |
+
|
59 |
+
categories_unseen = [
|
60 |
+
{'id': 5, 'name': 'airplane'},
|
61 |
+
{'id': 6, 'name': 'bus'},
|
62 |
+
{'id': 17, 'name': 'cat'},
|
63 |
+
{'id': 18, 'name': 'dog'},
|
64 |
+
{'id': 21, 'name': 'cow'},
|
65 |
+
{'id': 22, 'name': 'elephant'},
|
66 |
+
{'id': 28, 'name': 'umbrella'},
|
67 |
+
{'id': 32, 'name': 'tie'},
|
68 |
+
{'id': 36, 'name': 'snowboard'},
|
69 |
+
{'id': 41, 'name': 'skateboard'},
|
70 |
+
{'id': 47, 'name': 'cup'},
|
71 |
+
{'id': 49, 'name': 'knife'},
|
72 |
+
{'id': 61, 'name': 'cake'},
|
73 |
+
{'id': 63, 'name': 'couch'},
|
74 |
+
{'id': 76, 'name': 'keyboard'},
|
75 |
+
{'id': 81, 'name': 'sink'},
|
76 |
+
{'id': 87, 'name': 'scissors'},
|
77 |
+
]
|
78 |
+
|
79 |
+
def _get_metadata(cat):
|
80 |
+
if cat == 'all':
|
81 |
+
return _get_builtin_metadata('coco')
|
82 |
+
elif cat == 'seen':
|
83 |
+
id_to_name = {x['id']: x['name'] for x in categories_seen}
|
84 |
+
else:
|
85 |
+
assert cat == 'unseen'
|
86 |
+
id_to_name = {x['id']: x['name'] for x in categories_unseen}
|
87 |
+
|
88 |
+
thing_dataset_id_to_contiguous_id = {
|
89 |
+
x: i for i, x in enumerate(sorted(id_to_name))}
|
90 |
+
thing_classes = [id_to_name[k] for k in sorted(id_to_name)]
|
91 |
+
return {
|
92 |
+
"thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
|
93 |
+
"thing_classes": thing_classes}
|
94 |
+
|
95 |
+
_PREDEFINED_SPLITS_COCO = {
|
96 |
+
"coco_zeroshot_train": ("coco/train2017", "coco/zero-shot/instances_train2017_seen_2.json", 'seen'),
|
97 |
+
"coco_zeroshot_val": ("coco/val2017", "coco/zero-shot/instances_val2017_unseen_2.json", 'unseen'),
|
98 |
+
"coco_not_zeroshot_val": ("coco/val2017", "coco/zero-shot/instances_val2017_seen_2.json", 'seen'),
|
99 |
+
"coco_generalized_zeroshot_val": ("coco/val2017", "coco/zero-shot/instances_val2017_all_2_oriorder.json", 'all'),
|
100 |
+
"coco_zeroshot_train_oriorder": ("coco/train2017", "coco/zero-shot/instances_train2017_seen_2_oriorder.json", 'all'),
|
101 |
+
}
|
102 |
+
|
103 |
+
for key, (image_root, json_file, cat) in _PREDEFINED_SPLITS_COCO.items():
|
104 |
+
register_coco_instances(
|
105 |
+
key,
|
106 |
+
_get_metadata(cat),
|
107 |
+
os.path.join("datasets", json_file) if "://" not in json_file else json_file,
|
108 |
+
os.path.join("datasets", image_root),
|
109 |
+
)
|
110 |
+
|
111 |
+
_CUSTOM_SPLITS_COCO = {
|
112 |
+
"cc3m_coco_train_tags": ("cc3m/training/", "cc3m/coco_train_image_info_tags.json"),
|
113 |
+
"coco_caption_train_tags": ("coco/train2017/", "coco/annotations/captions_train2017_tags_allcaps.json"),}
|
114 |
+
|
115 |
+
for key, (image_root, json_file) in _CUSTOM_SPLITS_COCO.items():
|
116 |
+
custom_register_lvis_instances(
|
117 |
+
key,
|
118 |
+
_get_builtin_metadata('coco'),
|
119 |
+
os.path.join("datasets", json_file) if "://" not in json_file else json_file,
|
120 |
+
os.path.join("datasets", image_root),
|
121 |
+
)
|
detic/data/datasets/imagenet.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
from detectron2.data import DatasetCatalog, MetadataCatalog
|
6 |
+
from detectron2.data.datasets.lvis import get_lvis_instances_meta
|
7 |
+
from .lvis_v1 import custom_load_lvis_json, get_lvis_22k_meta
|
8 |
+
def custom_register_imagenet_instances(name, metadata, json_file, image_root):
|
9 |
+
"""
|
10 |
+
"""
|
11 |
+
DatasetCatalog.register(name, lambda: custom_load_lvis_json(
|
12 |
+
json_file, image_root, name))
|
13 |
+
MetadataCatalog.get(name).set(
|
14 |
+
json_file=json_file, image_root=image_root,
|
15 |
+
evaluator_type="imagenet", **metadata
|
16 |
+
)
|
17 |
+
|
18 |
+
_CUSTOM_SPLITS_IMAGENET = {
|
19 |
+
"imagenet_lvis_v1": ("imagenet/ImageNet-LVIS/", "imagenet/annotations/imagenet_lvis_image_info.json"),
|
20 |
+
}
|
21 |
+
|
22 |
+
for key, (image_root, json_file) in _CUSTOM_SPLITS_IMAGENET.items():
|
23 |
+
custom_register_imagenet_instances(
|
24 |
+
key,
|
25 |
+
get_lvis_instances_meta('lvis_v1'),
|
26 |
+
os.path.join("datasets", json_file) if "://" not in json_file else json_file,
|
27 |
+
os.path.join("datasets", image_root),
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
_CUSTOM_SPLITS_IMAGENET_22K = {
|
32 |
+
"imagenet_lvis-22k": ("imagenet/ImageNet-LVIS/", "imagenet/annotations/imagenet-22k_image_info_lvis-22k.json"),
|
33 |
+
}
|
34 |
+
|
35 |
+
for key, (image_root, json_file) in _CUSTOM_SPLITS_IMAGENET_22K.items():
|
36 |
+
custom_register_imagenet_instances(
|
37 |
+
key,
|
38 |
+
get_lvis_22k_meta(),
|
39 |
+
os.path.join("datasets", json_file) if "://" not in json_file else json_file,
|
40 |
+
os.path.join("datasets", image_root),
|
41 |
+
)
|
detic/data/datasets/lvis_22k_categories.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
detic/data/datasets/lvis_v1.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
from fvcore.common.timer import Timer
|
6 |
+
from detectron2.structures import BoxMode
|
7 |
+
from fvcore.common.file_io import PathManager
|
8 |
+
from detectron2.data import DatasetCatalog, MetadataCatalog
|
9 |
+
from detectron2.data.datasets.lvis import get_lvis_instances_meta
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
__all__ = ["custom_load_lvis_json", "custom_register_lvis_instances"]
|
14 |
+
|
15 |
+
|
16 |
+
def custom_register_lvis_instances(name, metadata, json_file, image_root):
|
17 |
+
"""
|
18 |
+
"""
|
19 |
+
DatasetCatalog.register(name, lambda: custom_load_lvis_json(
|
20 |
+
json_file, image_root, name))
|
21 |
+
MetadataCatalog.get(name).set(
|
22 |
+
json_file=json_file, image_root=image_root,
|
23 |
+
evaluator_type="lvis", **metadata
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def custom_load_lvis_json(json_file, image_root, dataset_name=None):
|
28 |
+
'''
|
29 |
+
Modifications:
|
30 |
+
use `file_name`
|
31 |
+
convert neg_category_ids
|
32 |
+
add pos_category_ids
|
33 |
+
'''
|
34 |
+
from lvis import LVIS
|
35 |
+
|
36 |
+
json_file = PathManager.get_local_path(json_file)
|
37 |
+
|
38 |
+
timer = Timer()
|
39 |
+
lvis_api = LVIS(json_file)
|
40 |
+
if timer.seconds() > 1:
|
41 |
+
logger.info("Loading {} takes {:.2f} seconds.".format(
|
42 |
+
json_file, timer.seconds()))
|
43 |
+
|
44 |
+
catid2contid = {x['id']: i for i, x in enumerate(
|
45 |
+
sorted(lvis_api.dataset['categories'], key=lambda x: x['id']))}
|
46 |
+
if len(lvis_api.dataset['categories']) == 1203:
|
47 |
+
for x in lvis_api.dataset['categories']:
|
48 |
+
assert catid2contid[x['id']] == x['id'] - 1
|
49 |
+
img_ids = sorted(lvis_api.imgs.keys())
|
50 |
+
imgs = lvis_api.load_imgs(img_ids)
|
51 |
+
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids]
|
52 |
+
|
53 |
+
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
|
54 |
+
assert len(set(ann_ids)) == len(ann_ids), \
|
55 |
+
"Annotation ids in '{}' are not unique".format(json_file)
|
56 |
+
|
57 |
+
imgs_anns = list(zip(imgs, anns))
|
58 |
+
logger.info("Loaded {} images in the LVIS v1 format from {}".format(
|
59 |
+
len(imgs_anns), json_file))
|
60 |
+
|
61 |
+
dataset_dicts = []
|
62 |
+
|
63 |
+
for (img_dict, anno_dict_list) in imgs_anns:
|
64 |
+
record = {}
|
65 |
+
if "file_name" in img_dict:
|
66 |
+
file_name = img_dict["file_name"]
|
67 |
+
if img_dict["file_name"].startswith("COCO"):
|
68 |
+
file_name = file_name[-16:]
|
69 |
+
record["file_name"] = os.path.join(image_root, file_name)
|
70 |
+
elif 'coco_url' in img_dict:
|
71 |
+
# e.g., http://images.cocodataset.org/train2017/000000391895.jpg
|
72 |
+
file_name = img_dict["coco_url"][30:]
|
73 |
+
record["file_name"] = os.path.join(image_root, file_name)
|
74 |
+
elif 'tar_index' in img_dict:
|
75 |
+
record['tar_index'] = img_dict['tar_index']
|
76 |
+
|
77 |
+
record["height"] = img_dict["height"]
|
78 |
+
record["width"] = img_dict["width"]
|
79 |
+
record["not_exhaustive_category_ids"] = img_dict.get(
|
80 |
+
"not_exhaustive_category_ids", [])
|
81 |
+
record["neg_category_ids"] = img_dict.get("neg_category_ids", [])
|
82 |
+
# NOTE: modified by Xingyi: convert to 0-based
|
83 |
+
record["neg_category_ids"] = [
|
84 |
+
catid2contid[x] for x in record["neg_category_ids"]]
|
85 |
+
if 'pos_category_ids' in img_dict:
|
86 |
+
record['pos_category_ids'] = [
|
87 |
+
catid2contid[x] for x in img_dict.get("pos_category_ids", [])]
|
88 |
+
if 'captions' in img_dict:
|
89 |
+
record['captions'] = img_dict['captions']
|
90 |
+
if 'caption_features' in img_dict:
|
91 |
+
record['caption_features'] = img_dict['caption_features']
|
92 |
+
image_id = record["image_id"] = img_dict["id"]
|
93 |
+
|
94 |
+
objs = []
|
95 |
+
for anno in anno_dict_list:
|
96 |
+
assert anno["image_id"] == image_id
|
97 |
+
if anno.get('iscrowd', 0) > 0:
|
98 |
+
continue
|
99 |
+
obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS}
|
100 |
+
obj["category_id"] = catid2contid[anno['category_id']]
|
101 |
+
if 'segmentation' in anno:
|
102 |
+
segm = anno["segmentation"]
|
103 |
+
valid_segm = [poly for poly in segm \
|
104 |
+
if len(poly) % 2 == 0 and len(poly) >= 6]
|
105 |
+
# assert len(segm) == len(
|
106 |
+
# valid_segm
|
107 |
+
# ), "Annotation contains an invalid polygon with < 3 points"
|
108 |
+
if not len(segm) == len(valid_segm):
|
109 |
+
print('Annotation contains an invalid polygon with < 3 points')
|
110 |
+
assert len(segm) > 0
|
111 |
+
obj["segmentation"] = segm
|
112 |
+
objs.append(obj)
|
113 |
+
record["annotations"] = objs
|
114 |
+
dataset_dicts.append(record)
|
115 |
+
|
116 |
+
return dataset_dicts
|
117 |
+
|
118 |
+
_CUSTOM_SPLITS_LVIS = {
|
119 |
+
"lvis_v1_train+coco": ("coco/", "lvis/lvis_v1_train+coco_mask.json"),
|
120 |
+
"lvis_v1_train_norare": ("coco/", "lvis/lvis_v1_train_norare.json"),
|
121 |
+
}
|
122 |
+
|
123 |
+
|
124 |
+
for key, (image_root, json_file) in _CUSTOM_SPLITS_LVIS.items():
|
125 |
+
custom_register_lvis_instances(
|
126 |
+
key,
|
127 |
+
get_lvis_instances_meta(key),
|
128 |
+
os.path.join("datasets", json_file) if "://" not in json_file else json_file,
|
129 |
+
os.path.join("datasets", image_root),
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
def get_lvis_22k_meta():
|
134 |
+
from .lvis_22k_categories import CATEGORIES
|
135 |
+
cat_ids = [k["id"] for k in CATEGORIES]
|
136 |
+
assert min(cat_ids) == 1 and max(cat_ids) == len(
|
137 |
+
cat_ids
|
138 |
+
), "Category ids are not in [1, #categories], as expected"
|
139 |
+
# Ensure that the category list is sorted by id
|
140 |
+
lvis_categories = sorted(CATEGORIES, key=lambda x: x["id"])
|
141 |
+
thing_classes = [k["name"] for k in lvis_categories]
|
142 |
+
meta = {"thing_classes": thing_classes}
|
143 |
+
return meta
|
144 |
+
|
145 |
+
_CUSTOM_SPLITS_LVIS_22K = {
|
146 |
+
"lvis_v1_train_22k": ("coco/", "lvis/lvis_v1_train_lvis-22k.json"),
|
147 |
+
}
|
148 |
+
|
149 |
+
for key, (image_root, json_file) in _CUSTOM_SPLITS_LVIS_22K.items():
|
150 |
+
custom_register_lvis_instances(
|
151 |
+
key,
|
152 |
+
get_lvis_22k_meta(),
|
153 |
+
os.path.join("datasets", json_file) if "://" not in json_file else json_file,
|
154 |
+
os.path.join("datasets", image_root),
|
155 |
+
)
|
detic/data/datasets/objects365.py
ADDED
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from detectron2.data.datasets.register_coco import register_coco_instances
|
3 |
+
import os
|
4 |
+
|
5 |
+
# categories_v2 = [
|
6 |
+
# {'id': 1, 'name': 'Person'},
|
7 |
+
# {'id': 2, 'name': 'Sneakers'},
|
8 |
+
# {'id': 3, 'name': 'Chair'},
|
9 |
+
# {'id': 4, 'name': 'Other Shoes'},
|
10 |
+
# {'id': 5, 'name': 'Hat'},
|
11 |
+
# {'id': 6, 'name': 'Car'},
|
12 |
+
# {'id': 7, 'name': 'Lamp'},
|
13 |
+
# {'id': 8, 'name': 'Glasses'},
|
14 |
+
# {'id': 9, 'name': 'Bottle'},
|
15 |
+
# {'id': 10, 'name': 'Desk'},
|
16 |
+
# {'id': 11, 'name': 'Cup'},
|
17 |
+
# {'id': 12, 'name': 'Street Lights'},
|
18 |
+
# {'id': 13, 'name': 'Cabinet/shelf'},
|
19 |
+
# {'id': 14, 'name': 'Handbag/Satchel'},
|
20 |
+
# {'id': 15, 'name': 'Bracelet'},
|
21 |
+
# {'id': 16, 'name': 'Plate'},
|
22 |
+
# {'id': 17, 'name': 'Picture/Frame'},
|
23 |
+
# {'id': 18, 'name': 'Helmet'},
|
24 |
+
# {'id': 19, 'name': 'Book'},
|
25 |
+
# {'id': 20, 'name': 'Gloves'},
|
26 |
+
# {'id': 21, 'name': 'Storage box'},
|
27 |
+
# {'id': 22, 'name': 'Boat'},
|
28 |
+
# {'id': 23, 'name': 'Leather Shoes'},
|
29 |
+
# {'id': 24, 'name': 'Flower'},
|
30 |
+
# {'id': 25, 'name': 'Bench'},
|
31 |
+
# {'id': 26, 'name': 'Potted Plant'},
|
32 |
+
# {'id': 27, 'name': 'Bowl/Basin'},
|
33 |
+
# {'id': 28, 'name': 'Flag'},
|
34 |
+
# {'id': 29, 'name': 'Pillow'},
|
35 |
+
# {'id': 30, 'name': 'Boots'},
|
36 |
+
# {'id': 31, 'name': 'Vase'},
|
37 |
+
# {'id': 32, 'name': 'Microphone'},
|
38 |
+
# {'id': 33, 'name': 'Necklace'},
|
39 |
+
# {'id': 34, 'name': 'Ring'},
|
40 |
+
# {'id': 35, 'name': 'SUV'},
|
41 |
+
# {'id': 36, 'name': 'Wine Glass'},
|
42 |
+
# {'id': 37, 'name': 'Belt'},
|
43 |
+
# {'id': 38, 'name': 'Moniter/TV'},
|
44 |
+
# {'id': 39, 'name': 'Backpack'},
|
45 |
+
# {'id': 40, 'name': 'Umbrella'},
|
46 |
+
# {'id': 41, 'name': 'Traffic Light'},
|
47 |
+
# {'id': 42, 'name': 'Speaker'},
|
48 |
+
# {'id': 43, 'name': 'Watch'},
|
49 |
+
# {'id': 44, 'name': 'Tie'},
|
50 |
+
# {'id': 45, 'name': 'Trash bin Can'},
|
51 |
+
# {'id': 46, 'name': 'Slippers'},
|
52 |
+
# {'id': 47, 'name': 'Bicycle'},
|
53 |
+
# {'id': 48, 'name': 'Stool'},
|
54 |
+
# {'id': 49, 'name': 'Barrel/bucket'},
|
55 |
+
# {'id': 50, 'name': 'Van'},
|
56 |
+
# {'id': 51, 'name': 'Couch'},
|
57 |
+
# {'id': 52, 'name': 'Sandals'},
|
58 |
+
# {'id': 53, 'name': 'Bakset'},
|
59 |
+
# {'id': 54, 'name': 'Drum'},
|
60 |
+
# {'id': 55, 'name': 'Pen/Pencil'},
|
61 |
+
# {'id': 56, 'name': 'Bus'},
|
62 |
+
# {'id': 57, 'name': 'Wild Bird'},
|
63 |
+
# {'id': 58, 'name': 'High Heels'},
|
64 |
+
# {'id': 59, 'name': 'Motorcycle'},
|
65 |
+
# {'id': 60, 'name': 'Guitar'},
|
66 |
+
# {'id': 61, 'name': 'Carpet'},
|
67 |
+
# {'id': 62, 'name': 'Cell Phone'},
|
68 |
+
# {'id': 63, 'name': 'Bread'},
|
69 |
+
# {'id': 64, 'name': 'Camera'},
|
70 |
+
# {'id': 65, 'name': 'Canned'},
|
71 |
+
# {'id': 66, 'name': 'Truck'},
|
72 |
+
# {'id': 67, 'name': 'Traffic cone'},
|
73 |
+
# {'id': 68, 'name': 'Cymbal'},
|
74 |
+
# {'id': 69, 'name': 'Lifesaver'},
|
75 |
+
# {'id': 70, 'name': 'Towel'},
|
76 |
+
# {'id': 71, 'name': 'Stuffed Toy'},
|
77 |
+
# {'id': 72, 'name': 'Candle'},
|
78 |
+
# {'id': 73, 'name': 'Sailboat'},
|
79 |
+
# {'id': 74, 'name': 'Laptop'},
|
80 |
+
# {'id': 75, 'name': 'Awning'},
|
81 |
+
# {'id': 76, 'name': 'Bed'},
|
82 |
+
# {'id': 77, 'name': 'Faucet'},
|
83 |
+
# {'id': 78, 'name': 'Tent'},
|
84 |
+
# {'id': 79, 'name': 'Horse'},
|
85 |
+
# {'id': 80, 'name': 'Mirror'},
|
86 |
+
# {'id': 81, 'name': 'Power outlet'},
|
87 |
+
# {'id': 82, 'name': 'Sink'},
|
88 |
+
# {'id': 83, 'name': 'Apple'},
|
89 |
+
# {'id': 84, 'name': 'Air Conditioner'},
|
90 |
+
# {'id': 85, 'name': 'Knife'},
|
91 |
+
# {'id': 86, 'name': 'Hockey Stick'},
|
92 |
+
# {'id': 87, 'name': 'Paddle'},
|
93 |
+
# {'id': 88, 'name': 'Pickup Truck'},
|
94 |
+
# {'id': 89, 'name': 'Fork'},
|
95 |
+
# {'id': 90, 'name': 'Traffic Sign'},
|
96 |
+
# {'id': 91, 'name': 'Ballon'},
|
97 |
+
# {'id': 92, 'name': 'Tripod'},
|
98 |
+
# {'id': 93, 'name': 'Dog'},
|
99 |
+
# {'id': 94, 'name': 'Spoon'},
|
100 |
+
# {'id': 95, 'name': 'Clock'},
|
101 |
+
# {'id': 96, 'name': 'Pot'},
|
102 |
+
# {'id': 97, 'name': 'Cow'},
|
103 |
+
# {'id': 98, 'name': 'Cake'},
|
104 |
+
# {'id': 99, 'name': 'Dinning Table'},
|
105 |
+
# {'id': 100, 'name': 'Sheep'},
|
106 |
+
# {'id': 101, 'name': 'Hanger'},
|
107 |
+
# {'id': 102, 'name': 'Blackboard/Whiteboard'},
|
108 |
+
# {'id': 103, 'name': 'Napkin'},
|
109 |
+
# {'id': 104, 'name': 'Other Fish'},
|
110 |
+
# {'id': 105, 'name': 'Orange/Tangerine'},
|
111 |
+
# {'id': 106, 'name': 'Toiletry'},
|
112 |
+
# {'id': 107, 'name': 'Keyboard'},
|
113 |
+
# {'id': 108, 'name': 'Tomato'},
|
114 |
+
# {'id': 109, 'name': 'Lantern'},
|
115 |
+
# {'id': 110, 'name': 'Machinery Vehicle'},
|
116 |
+
# {'id': 111, 'name': 'Fan'},
|
117 |
+
# {'id': 112, 'name': 'Green Vegetables'},
|
118 |
+
# {'id': 113, 'name': 'Banana'},
|
119 |
+
# {'id': 114, 'name': 'Baseball Glove'},
|
120 |
+
# {'id': 115, 'name': 'Airplane'},
|
121 |
+
# {'id': 116, 'name': 'Mouse'},
|
122 |
+
# {'id': 117, 'name': 'Train'},
|
123 |
+
# {'id': 118, 'name': 'Pumpkin'},
|
124 |
+
# {'id': 119, 'name': 'Soccer'},
|
125 |
+
# {'id': 120, 'name': 'Skiboard'},
|
126 |
+
# {'id': 121, 'name': 'Luggage'},
|
127 |
+
# {'id': 122, 'name': 'Nightstand'},
|
128 |
+
# {'id': 123, 'name': 'Tea pot'},
|
129 |
+
# {'id': 124, 'name': 'Telephone'},
|
130 |
+
# {'id': 125, 'name': 'Trolley'},
|
131 |
+
# {'id': 126, 'name': 'Head Phone'},
|
132 |
+
# {'id': 127, 'name': 'Sports Car'},
|
133 |
+
# {'id': 128, 'name': 'Stop Sign'},
|
134 |
+
# {'id': 129, 'name': 'Dessert'},
|
135 |
+
# {'id': 130, 'name': 'Scooter'},
|
136 |
+
# {'id': 131, 'name': 'Stroller'},
|
137 |
+
# {'id': 132, 'name': 'Crane'},
|
138 |
+
# {'id': 133, 'name': 'Remote'},
|
139 |
+
# {'id': 134, 'name': 'Refrigerator'},
|
140 |
+
# {'id': 135, 'name': 'Oven'},
|
141 |
+
# {'id': 136, 'name': 'Lemon'},
|
142 |
+
# {'id': 137, 'name': 'Duck'},
|
143 |
+
# {'id': 138, 'name': 'Baseball Bat'},
|
144 |
+
# {'id': 139, 'name': 'Surveillance Camera'},
|
145 |
+
# {'id': 140, 'name': 'Cat'},
|
146 |
+
# {'id': 141, 'name': 'Jug'},
|
147 |
+
# {'id': 142, 'name': 'Broccoli'},
|
148 |
+
# {'id': 143, 'name': 'Piano'},
|
149 |
+
# {'id': 144, 'name': 'Pizza'},
|
150 |
+
# {'id': 145, 'name': 'Elephant'},
|
151 |
+
# {'id': 146, 'name': 'Skateboard'},
|
152 |
+
# {'id': 147, 'name': 'Surfboard'},
|
153 |
+
# {'id': 148, 'name': 'Gun'},
|
154 |
+
# {'id': 149, 'name': 'Skating and Skiing shoes'},
|
155 |
+
# {'id': 150, 'name': 'Gas stove'},
|
156 |
+
# {'id': 151, 'name': 'Donut'},
|
157 |
+
# {'id': 152, 'name': 'Bow Tie'},
|
158 |
+
# {'id': 153, 'name': 'Carrot'},
|
159 |
+
# {'id': 154, 'name': 'Toilet'},
|
160 |
+
# {'id': 155, 'name': 'Kite'},
|
161 |
+
# {'id': 156, 'name': 'Strawberry'},
|
162 |
+
# {'id': 157, 'name': 'Other Balls'},
|
163 |
+
# {'id': 158, 'name': 'Shovel'},
|
164 |
+
# {'id': 159, 'name': 'Pepper'},
|
165 |
+
# {'id': 160, 'name': 'Computer Box'},
|
166 |
+
# {'id': 161, 'name': 'Toilet Paper'},
|
167 |
+
# {'id': 162, 'name': 'Cleaning Products'},
|
168 |
+
# {'id': 163, 'name': 'Chopsticks'},
|
169 |
+
# {'id': 164, 'name': 'Microwave'},
|
170 |
+
# {'id': 165, 'name': 'Pigeon'},
|
171 |
+
# {'id': 166, 'name': 'Baseball'},
|
172 |
+
# {'id': 167, 'name': 'Cutting/chopping Board'},
|
173 |
+
# {'id': 168, 'name': 'Coffee Table'},
|
174 |
+
# {'id': 169, 'name': 'Side Table'},
|
175 |
+
# {'id': 170, 'name': 'Scissors'},
|
176 |
+
# {'id': 171, 'name': 'Marker'},
|
177 |
+
# {'id': 172, 'name': 'Pie'},
|
178 |
+
# {'id': 173, 'name': 'Ladder'},
|
179 |
+
# {'id': 174, 'name': 'Snowboard'},
|
180 |
+
# {'id': 175, 'name': 'Cookies'},
|
181 |
+
# {'id': 176, 'name': 'Radiator'},
|
182 |
+
# {'id': 177, 'name': 'Fire Hydrant'},
|
183 |
+
# {'id': 178, 'name': 'Basketball'},
|
184 |
+
# {'id': 179, 'name': 'Zebra'},
|
185 |
+
# {'id': 180, 'name': 'Grape'},
|
186 |
+
# {'id': 181, 'name': 'Giraffe'},
|
187 |
+
# {'id': 182, 'name': 'Potato'},
|
188 |
+
# {'id': 183, 'name': 'Sausage'},
|
189 |
+
# {'id': 184, 'name': 'Tricycle'},
|
190 |
+
# {'id': 185, 'name': 'Violin'},
|
191 |
+
# {'id': 186, 'name': 'Egg'},
|
192 |
+
# {'id': 187, 'name': 'Fire Extinguisher'},
|
193 |
+
# {'id': 188, 'name': 'Candy'},
|
194 |
+
# {'id': 189, 'name': 'Fire Truck'},
|
195 |
+
# {'id': 190, 'name': 'Billards'},
|
196 |
+
# {'id': 191, 'name': 'Converter'},
|
197 |
+
# {'id': 192, 'name': 'Bathtub'},
|
198 |
+
# {'id': 193, 'name': 'Wheelchair'},
|
199 |
+
# {'id': 194, 'name': 'Golf Club'},
|
200 |
+
# {'id': 195, 'name': 'Briefcase'},
|
201 |
+
# {'id': 196, 'name': 'Cucumber'},
|
202 |
+
# {'id': 197, 'name': 'Cigar/Cigarette '},
|
203 |
+
# {'id': 198, 'name': 'Paint Brush'},
|
204 |
+
# {'id': 199, 'name': 'Pear'},
|
205 |
+
# {'id': 200, 'name': 'Heavy Truck'},
|
206 |
+
# {'id': 201, 'name': 'Hamburger'},
|
207 |
+
# {'id': 202, 'name': 'Extractor'},
|
208 |
+
# {'id': 203, 'name': 'Extention Cord'},
|
209 |
+
# {'id': 204, 'name': 'Tong'},
|
210 |
+
# {'id': 205, 'name': 'Tennis Racket'},
|
211 |
+
# {'id': 206, 'name': 'Folder'},
|
212 |
+
# {'id': 207, 'name': 'American Football'},
|
213 |
+
# {'id': 208, 'name': 'earphone'},
|
214 |
+
# {'id': 209, 'name': 'Mask'},
|
215 |
+
# {'id': 210, 'name': 'Kettle'},
|
216 |
+
# {'id': 211, 'name': 'Tennis'},
|
217 |
+
# {'id': 212, 'name': 'Ship'},
|
218 |
+
# {'id': 213, 'name': 'Swing'},
|
219 |
+
# {'id': 214, 'name': 'Coffee Machine'},
|
220 |
+
# {'id': 215, 'name': 'Slide'},
|
221 |
+
# {'id': 216, 'name': 'Carriage'},
|
222 |
+
# {'id': 217, 'name': 'Onion'},
|
223 |
+
# {'id': 218, 'name': 'Green beans'},
|
224 |
+
# {'id': 219, 'name': 'Projector'},
|
225 |
+
# {'id': 220, 'name': 'Frisbee'},
|
226 |
+
# {'id': 221, 'name': 'Washing Machine/Drying Machine'},
|
227 |
+
# {'id': 222, 'name': 'Chicken'},
|
228 |
+
# {'id': 223, 'name': 'Printer'},
|
229 |
+
# {'id': 224, 'name': 'Watermelon'},
|
230 |
+
# {'id': 225, 'name': 'Saxophone'},
|
231 |
+
# {'id': 226, 'name': 'Tissue'},
|
232 |
+
# {'id': 227, 'name': 'Toothbrush'},
|
233 |
+
# {'id': 228, 'name': 'Ice cream'},
|
234 |
+
# {'id': 229, 'name': 'Hotair ballon'},
|
235 |
+
# {'id': 230, 'name': 'Cello'},
|
236 |
+
# {'id': 231, 'name': 'French Fries'},
|
237 |
+
# {'id': 232, 'name': 'Scale'},
|
238 |
+
# {'id': 233, 'name': 'Trophy'},
|
239 |
+
# {'id': 234, 'name': 'Cabbage'},
|
240 |
+
# {'id': 235, 'name': 'Hot dog'},
|
241 |
+
# {'id': 236, 'name': 'Blender'},
|
242 |
+
# {'id': 237, 'name': 'Peach'},
|
243 |
+
# {'id': 238, 'name': 'Rice'},
|
244 |
+
# {'id': 239, 'name': 'Wallet/Purse'},
|
245 |
+
# {'id': 240, 'name': 'Volleyball'},
|
246 |
+
# {'id': 241, 'name': 'Deer'},
|
247 |
+
# {'id': 242, 'name': 'Goose'},
|
248 |
+
# {'id': 243, 'name': 'Tape'},
|
249 |
+
# {'id': 244, 'name': 'Tablet'},
|
250 |
+
# {'id': 245, 'name': 'Cosmetics'},
|
251 |
+
# {'id': 246, 'name': 'Trumpet'},
|
252 |
+
# {'id': 247, 'name': 'Pineapple'},
|
253 |
+
# {'id': 248, 'name': 'Golf Ball'},
|
254 |
+
# {'id': 249, 'name': 'Ambulance'},
|
255 |
+
# {'id': 250, 'name': 'Parking meter'},
|
256 |
+
# {'id': 251, 'name': 'Mango'},
|
257 |
+
# {'id': 252, 'name': 'Key'},
|
258 |
+
# {'id': 253, 'name': 'Hurdle'},
|
259 |
+
# {'id': 254, 'name': 'Fishing Rod'},
|
260 |
+
# {'id': 255, 'name': 'Medal'},
|
261 |
+
# {'id': 256, 'name': 'Flute'},
|
262 |
+
# {'id': 257, 'name': 'Brush'},
|
263 |
+
# {'id': 258, 'name': 'Penguin'},
|
264 |
+
# {'id': 259, 'name': 'Megaphone'},
|
265 |
+
# {'id': 260, 'name': 'Corn'},
|
266 |
+
# {'id': 261, 'name': 'Lettuce'},
|
267 |
+
# {'id': 262, 'name': 'Garlic'},
|
268 |
+
# {'id': 263, 'name': 'Swan'},
|
269 |
+
# {'id': 264, 'name': 'Helicopter'},
|
270 |
+
# {'id': 265, 'name': 'Green Onion'},
|
271 |
+
# {'id': 266, 'name': 'Sandwich'},
|
272 |
+
# {'id': 267, 'name': 'Nuts'},
|
273 |
+
# {'id': 268, 'name': 'Speed Limit Sign'},
|
274 |
+
# {'id': 269, 'name': 'Induction Cooker'},
|
275 |
+
# {'id': 270, 'name': 'Broom'},
|
276 |
+
# {'id': 271, 'name': 'Trombone'},
|
277 |
+
# {'id': 272, 'name': 'Plum'},
|
278 |
+
# {'id': 273, 'name': 'Rickshaw'},
|
279 |
+
# {'id': 274, 'name': 'Goldfish'},
|
280 |
+
# {'id': 275, 'name': 'Kiwi fruit'},
|
281 |
+
# {'id': 276, 'name': 'Router/modem'},
|
282 |
+
# {'id': 277, 'name': 'Poker Card'},
|
283 |
+
# {'id': 278, 'name': 'Toaster'},
|
284 |
+
# {'id': 279, 'name': 'Shrimp'},
|
285 |
+
# {'id': 280, 'name': 'Sushi'},
|
286 |
+
# {'id': 281, 'name': 'Cheese'},
|
287 |
+
# {'id': 282, 'name': 'Notepaper'},
|
288 |
+
# {'id': 283, 'name': 'Cherry'},
|
289 |
+
# {'id': 284, 'name': 'Pliers'},
|
290 |
+
# {'id': 285, 'name': 'CD'},
|
291 |
+
# {'id': 286, 'name': 'Pasta'},
|
292 |
+
# {'id': 287, 'name': 'Hammer'},
|
293 |
+
# {'id': 288, 'name': 'Cue'},
|
294 |
+
# {'id': 289, 'name': 'Avocado'},
|
295 |
+
# {'id': 290, 'name': 'Hamimelon'},
|
296 |
+
# {'id': 291, 'name': 'Flask'},
|
297 |
+
# {'id': 292, 'name': 'Mushroon'},
|
298 |
+
# {'id': 293, 'name': 'Screwdriver'},
|
299 |
+
# {'id': 294, 'name': 'Soap'},
|
300 |
+
# {'id': 295, 'name': 'Recorder'},
|
301 |
+
# {'id': 296, 'name': 'Bear'},
|
302 |
+
# {'id': 297, 'name': 'Eggplant'},
|
303 |
+
# {'id': 298, 'name': 'Board Eraser'},
|
304 |
+
# {'id': 299, 'name': 'Coconut'},
|
305 |
+
# {'id': 300, 'name': 'Tape Measur/ Ruler'},
|
306 |
+
# {'id': 301, 'name': 'Pig'},
|
307 |
+
# {'id': 302, 'name': 'Showerhead'},
|
308 |
+
# {'id': 303, 'name': 'Globe'},
|
309 |
+
# {'id': 304, 'name': 'Chips'},
|
310 |
+
# {'id': 305, 'name': 'Steak'},
|
311 |
+
# {'id': 306, 'name': 'Crosswalk Sign'},
|
312 |
+
# {'id': 307, 'name': 'Stapler'},
|
313 |
+
# {'id': 308, 'name': 'Campel'},
|
314 |
+
# {'id': 309, 'name': 'Formula 1 '},
|
315 |
+
# {'id': 310, 'name': 'Pomegranate'},
|
316 |
+
# {'id': 311, 'name': 'Dishwasher'},
|
317 |
+
# {'id': 312, 'name': 'Crab'},
|
318 |
+
# {'id': 313, 'name': 'Hoverboard'},
|
319 |
+
# {'id': 314, 'name': 'Meat ball'},
|
320 |
+
# {'id': 315, 'name': 'Rice Cooker'},
|
321 |
+
# {'id': 316, 'name': 'Tuba'},
|
322 |
+
# {'id': 317, 'name': 'Calculator'},
|
323 |
+
# {'id': 318, 'name': 'Papaya'},
|
324 |
+
# {'id': 319, 'name': 'Antelope'},
|
325 |
+
# {'id': 320, 'name': 'Parrot'},
|
326 |
+
# {'id': 321, 'name': 'Seal'},
|
327 |
+
# {'id': 322, 'name': 'Buttefly'},
|
328 |
+
# {'id': 323, 'name': 'Dumbbell'},
|
329 |
+
# {'id': 324, 'name': 'Donkey'},
|
330 |
+
# {'id': 325, 'name': 'Lion'},
|
331 |
+
# {'id': 326, 'name': 'Urinal'},
|
332 |
+
# {'id': 327, 'name': 'Dolphin'},
|
333 |
+
# {'id': 328, 'name': 'Electric Drill'},
|
334 |
+
# {'id': 329, 'name': 'Hair Dryer'},
|
335 |
+
# {'id': 330, 'name': 'Egg tart'},
|
336 |
+
# {'id': 331, 'name': 'Jellyfish'},
|
337 |
+
# {'id': 332, 'name': 'Treadmill'},
|
338 |
+
# {'id': 333, 'name': 'Lighter'},
|
339 |
+
# {'id': 334, 'name': 'Grapefruit'},
|
340 |
+
# {'id': 335, 'name': 'Game board'},
|
341 |
+
# {'id': 336, 'name': 'Mop'},
|
342 |
+
# {'id': 337, 'name': 'Radish'},
|
343 |
+
# {'id': 338, 'name': 'Baozi'},
|
344 |
+
# {'id': 339, 'name': 'Target'},
|
345 |
+
# {'id': 340, 'name': 'French'},
|
346 |
+
# {'id': 341, 'name': 'Spring Rolls'},
|
347 |
+
# {'id': 342, 'name': 'Monkey'},
|
348 |
+
# {'id': 343, 'name': 'Rabbit'},
|
349 |
+
# {'id': 344, 'name': 'Pencil Case'},
|
350 |
+
# {'id': 345, 'name': 'Yak'},
|
351 |
+
# {'id': 346, 'name': 'Red Cabbage'},
|
352 |
+
# {'id': 347, 'name': 'Binoculars'},
|
353 |
+
# {'id': 348, 'name': 'Asparagus'},
|
354 |
+
# {'id': 349, 'name': 'Barbell'},
|
355 |
+
# {'id': 350, 'name': 'Scallop'},
|
356 |
+
# {'id': 351, 'name': 'Noddles'},
|
357 |
+
# {'id': 352, 'name': 'Comb'},
|
358 |
+
# {'id': 353, 'name': 'Dumpling'},
|
359 |
+
# {'id': 354, 'name': 'Oyster'},
|
360 |
+
# {'id': 355, 'name': 'Table Teniis paddle'},
|
361 |
+
# {'id': 356, 'name': 'Cosmetics Brush/Eyeliner Pencil'},
|
362 |
+
# {'id': 357, 'name': 'Chainsaw'},
|
363 |
+
# {'id': 358, 'name': 'Eraser'},
|
364 |
+
# {'id': 359, 'name': 'Lobster'},
|
365 |
+
# {'id': 360, 'name': 'Durian'},
|
366 |
+
# {'id': 361, 'name': 'Okra'},
|
367 |
+
# {'id': 362, 'name': 'Lipstick'},
|
368 |
+
# {'id': 363, 'name': 'Cosmetics Mirror'},
|
369 |
+
# {'id': 364, 'name': 'Curling'},
|
370 |
+
# {'id': 365, 'name': 'Table Tennis '},
|
371 |
+
# ]
|
372 |
+
|
373 |
+
'''
|
374 |
+
The official Objects365 category names contains typos.
|
375 |
+
Below is a manual fix.
|
376 |
+
'''
|
377 |
+
categories_v2_fix = [
|
378 |
+
{'id': 1, 'name': 'Person'},
|
379 |
+
{'id': 2, 'name': 'Sneakers'},
|
380 |
+
{'id': 3, 'name': 'Chair'},
|
381 |
+
{'id': 4, 'name': 'Other Shoes'},
|
382 |
+
{'id': 5, 'name': 'Hat'},
|
383 |
+
{'id': 6, 'name': 'Car'},
|
384 |
+
{'id': 7, 'name': 'Lamp'},
|
385 |
+
{'id': 8, 'name': 'Glasses'},
|
386 |
+
{'id': 9, 'name': 'Bottle'},
|
387 |
+
{'id': 10, 'name': 'Desk'},
|
388 |
+
{'id': 11, 'name': 'Cup'},
|
389 |
+
{'id': 12, 'name': 'Street Lights'},
|
390 |
+
{'id': 13, 'name': 'Cabinet/shelf'},
|
391 |
+
{'id': 14, 'name': 'Handbag/Satchel'},
|
392 |
+
{'id': 15, 'name': 'Bracelet'},
|
393 |
+
{'id': 16, 'name': 'Plate'},
|
394 |
+
{'id': 17, 'name': 'Picture/Frame'},
|
395 |
+
{'id': 18, 'name': 'Helmet'},
|
396 |
+
{'id': 19, 'name': 'Book'},
|
397 |
+
{'id': 20, 'name': 'Gloves'},
|
398 |
+
{'id': 21, 'name': 'Storage box'},
|
399 |
+
{'id': 22, 'name': 'Boat'},
|
400 |
+
{'id': 23, 'name': 'Leather Shoes'},
|
401 |
+
{'id': 24, 'name': 'Flower'},
|
402 |
+
{'id': 25, 'name': 'Bench'},
|
403 |
+
{'id': 26, 'name': 'Potted Plant'},
|
404 |
+
{'id': 27, 'name': 'Bowl/Basin'},
|
405 |
+
{'id': 28, 'name': 'Flag'},
|
406 |
+
{'id': 29, 'name': 'Pillow'},
|
407 |
+
{'id': 30, 'name': 'Boots'},
|
408 |
+
{'id': 31, 'name': 'Vase'},
|
409 |
+
{'id': 32, 'name': 'Microphone'},
|
410 |
+
{'id': 33, 'name': 'Necklace'},
|
411 |
+
{'id': 34, 'name': 'Ring'},
|
412 |
+
{'id': 35, 'name': 'SUV'},
|
413 |
+
{'id': 36, 'name': 'Wine Glass'},
|
414 |
+
{'id': 37, 'name': 'Belt'},
|
415 |
+
{'id': 38, 'name': 'Monitor/TV'},
|
416 |
+
{'id': 39, 'name': 'Backpack'},
|
417 |
+
{'id': 40, 'name': 'Umbrella'},
|
418 |
+
{'id': 41, 'name': 'Traffic Light'},
|
419 |
+
{'id': 42, 'name': 'Speaker'},
|
420 |
+
{'id': 43, 'name': 'Watch'},
|
421 |
+
{'id': 44, 'name': 'Tie'},
|
422 |
+
{'id': 45, 'name': 'Trash bin Can'},
|
423 |
+
{'id': 46, 'name': 'Slippers'},
|
424 |
+
{'id': 47, 'name': 'Bicycle'},
|
425 |
+
{'id': 48, 'name': 'Stool'},
|
426 |
+
{'id': 49, 'name': 'Barrel/bucket'},
|
427 |
+
{'id': 50, 'name': 'Van'},
|
428 |
+
{'id': 51, 'name': 'Couch'},
|
429 |
+
{'id': 52, 'name': 'Sandals'},
|
430 |
+
{'id': 53, 'name': 'Basket'},
|
431 |
+
{'id': 54, 'name': 'Drum'},
|
432 |
+
{'id': 55, 'name': 'Pen/Pencil'},
|
433 |
+
{'id': 56, 'name': 'Bus'},
|
434 |
+
{'id': 57, 'name': 'Wild Bird'},
|
435 |
+
{'id': 58, 'name': 'High Heels'},
|
436 |
+
{'id': 59, 'name': 'Motorcycle'},
|
437 |
+
{'id': 60, 'name': 'Guitar'},
|
438 |
+
{'id': 61, 'name': 'Carpet'},
|
439 |
+
{'id': 62, 'name': 'Cell Phone'},
|
440 |
+
{'id': 63, 'name': 'Bread'},
|
441 |
+
{'id': 64, 'name': 'Camera'},
|
442 |
+
{'id': 65, 'name': 'Canned'},
|
443 |
+
{'id': 66, 'name': 'Truck'},
|
444 |
+
{'id': 67, 'name': 'Traffic cone'},
|
445 |
+
{'id': 68, 'name': 'Cymbal'},
|
446 |
+
{'id': 69, 'name': 'Lifesaver'},
|
447 |
+
{'id': 70, 'name': 'Towel'},
|
448 |
+
{'id': 71, 'name': 'Stuffed Toy'},
|
449 |
+
{'id': 72, 'name': 'Candle'},
|
450 |
+
{'id': 73, 'name': 'Sailboat'},
|
451 |
+
{'id': 74, 'name': 'Laptop'},
|
452 |
+
{'id': 75, 'name': 'Awning'},
|
453 |
+
{'id': 76, 'name': 'Bed'},
|
454 |
+
{'id': 77, 'name': 'Faucet'},
|
455 |
+
{'id': 78, 'name': 'Tent'},
|
456 |
+
{'id': 79, 'name': 'Horse'},
|
457 |
+
{'id': 80, 'name': 'Mirror'},
|
458 |
+
{'id': 81, 'name': 'Power outlet'},
|
459 |
+
{'id': 82, 'name': 'Sink'},
|
460 |
+
{'id': 83, 'name': 'Apple'},
|
461 |
+
{'id': 84, 'name': 'Air Conditioner'},
|
462 |
+
{'id': 85, 'name': 'Knife'},
|
463 |
+
{'id': 86, 'name': 'Hockey Stick'},
|
464 |
+
{'id': 87, 'name': 'Paddle'},
|
465 |
+
{'id': 88, 'name': 'Pickup Truck'},
|
466 |
+
{'id': 89, 'name': 'Fork'},
|
467 |
+
{'id': 90, 'name': 'Traffic Sign'},
|
468 |
+
{'id': 91, 'name': 'Ballon'},
|
469 |
+
{'id': 92, 'name': 'Tripod'},
|
470 |
+
{'id': 93, 'name': 'Dog'},
|
471 |
+
{'id': 94, 'name': 'Spoon'},
|
472 |
+
{'id': 95, 'name': 'Clock'},
|
473 |
+
{'id': 96, 'name': 'Pot'},
|
474 |
+
{'id': 97, 'name': 'Cow'},
|
475 |
+
{'id': 98, 'name': 'Cake'},
|
476 |
+
{'id': 99, 'name': 'Dining Table'},
|
477 |
+
{'id': 100, 'name': 'Sheep'},
|
478 |
+
{'id': 101, 'name': 'Hanger'},
|
479 |
+
{'id': 102, 'name': 'Blackboard/Whiteboard'},
|
480 |
+
{'id': 103, 'name': 'Napkin'},
|
481 |
+
{'id': 104, 'name': 'Other Fish'},
|
482 |
+
{'id': 105, 'name': 'Orange/Tangerine'},
|
483 |
+
{'id': 106, 'name': 'Toiletry'},
|
484 |
+
{'id': 107, 'name': 'Keyboard'},
|
485 |
+
{'id': 108, 'name': 'Tomato'},
|
486 |
+
{'id': 109, 'name': 'Lantern'},
|
487 |
+
{'id': 110, 'name': 'Machinery Vehicle'},
|
488 |
+
{'id': 111, 'name': 'Fan'},
|
489 |
+
{'id': 112, 'name': 'Green Vegetables'},
|
490 |
+
{'id': 113, 'name': 'Banana'},
|
491 |
+
{'id': 114, 'name': 'Baseball Glove'},
|
492 |
+
{'id': 115, 'name': 'Airplane'},
|
493 |
+
{'id': 116, 'name': 'Mouse'},
|
494 |
+
{'id': 117, 'name': 'Train'},
|
495 |
+
{'id': 118, 'name': 'Pumpkin'},
|
496 |
+
{'id': 119, 'name': 'Soccer'},
|
497 |
+
{'id': 120, 'name': 'Skiboard'},
|
498 |
+
{'id': 121, 'name': 'Luggage'},
|
499 |
+
{'id': 122, 'name': 'Nightstand'},
|
500 |
+
{'id': 123, 'name': 'Teapot'},
|
501 |
+
{'id': 124, 'name': 'Telephone'},
|
502 |
+
{'id': 125, 'name': 'Trolley'},
|
503 |
+
{'id': 126, 'name': 'Head Phone'},
|
504 |
+
{'id': 127, 'name': 'Sports Car'},
|
505 |
+
{'id': 128, 'name': 'Stop Sign'},
|
506 |
+
{'id': 129, 'name': 'Dessert'},
|
507 |
+
{'id': 130, 'name': 'Scooter'},
|
508 |
+
{'id': 131, 'name': 'Stroller'},
|
509 |
+
{'id': 132, 'name': 'Crane'},
|
510 |
+
{'id': 133, 'name': 'Remote'},
|
511 |
+
{'id': 134, 'name': 'Refrigerator'},
|
512 |
+
{'id': 135, 'name': 'Oven'},
|
513 |
+
{'id': 136, 'name': 'Lemon'},
|
514 |
+
{'id': 137, 'name': 'Duck'},
|
515 |
+
{'id': 138, 'name': 'Baseball Bat'},
|
516 |
+
{'id': 139, 'name': 'Surveillance Camera'},
|
517 |
+
{'id': 140, 'name': 'Cat'},
|
518 |
+
{'id': 141, 'name': 'Jug'},
|
519 |
+
{'id': 142, 'name': 'Broccoli'},
|
520 |
+
{'id': 143, 'name': 'Piano'},
|
521 |
+
{'id': 144, 'name': 'Pizza'},
|
522 |
+
{'id': 145, 'name': 'Elephant'},
|
523 |
+
{'id': 146, 'name': 'Skateboard'},
|
524 |
+
{'id': 147, 'name': 'Surfboard'},
|
525 |
+
{'id': 148, 'name': 'Gun'},
|
526 |
+
{'id': 149, 'name': 'Skating and Skiing shoes'},
|
527 |
+
{'id': 150, 'name': 'Gas stove'},
|
528 |
+
{'id': 151, 'name': 'Donut'},
|
529 |
+
{'id': 152, 'name': 'Bow Tie'},
|
530 |
+
{'id': 153, 'name': 'Carrot'},
|
531 |
+
{'id': 154, 'name': 'Toilet'},
|
532 |
+
{'id': 155, 'name': 'Kite'},
|
533 |
+
{'id': 156, 'name': 'Strawberry'},
|
534 |
+
{'id': 157, 'name': 'Other Balls'},
|
535 |
+
{'id': 158, 'name': 'Shovel'},
|
536 |
+
{'id': 159, 'name': 'Pepper'},
|
537 |
+
{'id': 160, 'name': 'Computer Box'},
|
538 |
+
{'id': 161, 'name': 'Toilet Paper'},
|
539 |
+
{'id': 162, 'name': 'Cleaning Products'},
|
540 |
+
{'id': 163, 'name': 'Chopsticks'},
|
541 |
+
{'id': 164, 'name': 'Microwave'},
|
542 |
+
{'id': 165, 'name': 'Pigeon'},
|
543 |
+
{'id': 166, 'name': 'Baseball'},
|
544 |
+
{'id': 167, 'name': 'Cutting/chopping Board'},
|
545 |
+
{'id': 168, 'name': 'Coffee Table'},
|
546 |
+
{'id': 169, 'name': 'Side Table'},
|
547 |
+
{'id': 170, 'name': 'Scissors'},
|
548 |
+
{'id': 171, 'name': 'Marker'},
|
549 |
+
{'id': 172, 'name': 'Pie'},
|
550 |
+
{'id': 173, 'name': 'Ladder'},
|
551 |
+
{'id': 174, 'name': 'Snowboard'},
|
552 |
+
{'id': 175, 'name': 'Cookies'},
|
553 |
+
{'id': 176, 'name': 'Radiator'},
|
554 |
+
{'id': 177, 'name': 'Fire Hydrant'},
|
555 |
+
{'id': 178, 'name': 'Basketball'},
|
556 |
+
{'id': 179, 'name': 'Zebra'},
|
557 |
+
{'id': 180, 'name': 'Grape'},
|
558 |
+
{'id': 181, 'name': 'Giraffe'},
|
559 |
+
{'id': 182, 'name': 'Potato'},
|
560 |
+
{'id': 183, 'name': 'Sausage'},
|
561 |
+
{'id': 184, 'name': 'Tricycle'},
|
562 |
+
{'id': 185, 'name': 'Violin'},
|
563 |
+
{'id': 186, 'name': 'Egg'},
|
564 |
+
{'id': 187, 'name': 'Fire Extinguisher'},
|
565 |
+
{'id': 188, 'name': 'Candy'},
|
566 |
+
{'id': 189, 'name': 'Fire Truck'},
|
567 |
+
{'id': 190, 'name': 'Billards'},
|
568 |
+
{'id': 191, 'name': 'Converter'},
|
569 |
+
{'id': 192, 'name': 'Bathtub'},
|
570 |
+
{'id': 193, 'name': 'Wheelchair'},
|
571 |
+
{'id': 194, 'name': 'Golf Club'},
|
572 |
+
{'id': 195, 'name': 'Briefcase'},
|
573 |
+
{'id': 196, 'name': 'Cucumber'},
|
574 |
+
{'id': 197, 'name': 'Cigar/Cigarette '},
|
575 |
+
{'id': 198, 'name': 'Paint Brush'},
|
576 |
+
{'id': 199, 'name': 'Pear'},
|
577 |
+
{'id': 200, 'name': 'Heavy Truck'},
|
578 |
+
{'id': 201, 'name': 'Hamburger'},
|
579 |
+
{'id': 202, 'name': 'Extractor'},
|
580 |
+
{'id': 203, 'name': 'Extension Cord'},
|
581 |
+
{'id': 204, 'name': 'Tong'},
|
582 |
+
{'id': 205, 'name': 'Tennis Racket'},
|
583 |
+
{'id': 206, 'name': 'Folder'},
|
584 |
+
{'id': 207, 'name': 'American Football'},
|
585 |
+
{'id': 208, 'name': 'earphone'},
|
586 |
+
{'id': 209, 'name': 'Mask'},
|
587 |
+
{'id': 210, 'name': 'Kettle'},
|
588 |
+
{'id': 211, 'name': 'Tennis'},
|
589 |
+
{'id': 212, 'name': 'Ship'},
|
590 |
+
{'id': 213, 'name': 'Swing'},
|
591 |
+
{'id': 214, 'name': 'Coffee Machine'},
|
592 |
+
{'id': 215, 'name': 'Slide'},
|
593 |
+
{'id': 216, 'name': 'Carriage'},
|
594 |
+
{'id': 217, 'name': 'Onion'},
|
595 |
+
{'id': 218, 'name': 'Green beans'},
|
596 |
+
{'id': 219, 'name': 'Projector'},
|
597 |
+
{'id': 220, 'name': 'Frisbee'},
|
598 |
+
{'id': 221, 'name': 'Washing Machine/Drying Machine'},
|
599 |
+
{'id': 222, 'name': 'Chicken'},
|
600 |
+
{'id': 223, 'name': 'Printer'},
|
601 |
+
{'id': 224, 'name': 'Watermelon'},
|
602 |
+
{'id': 225, 'name': 'Saxophone'},
|
603 |
+
{'id': 226, 'name': 'Tissue'},
|
604 |
+
{'id': 227, 'name': 'Toothbrush'},
|
605 |
+
{'id': 228, 'name': 'Ice cream'},
|
606 |
+
{'id': 229, 'name': 'Hot air balloon'},
|
607 |
+
{'id': 230, 'name': 'Cello'},
|
608 |
+
{'id': 231, 'name': 'French Fries'},
|
609 |
+
{'id': 232, 'name': 'Scale'},
|
610 |
+
{'id': 233, 'name': 'Trophy'},
|
611 |
+
{'id': 234, 'name': 'Cabbage'},
|
612 |
+
{'id': 235, 'name': 'Hot dog'},
|
613 |
+
{'id': 236, 'name': 'Blender'},
|
614 |
+
{'id': 237, 'name': 'Peach'},
|
615 |
+
{'id': 238, 'name': 'Rice'},
|
616 |
+
{'id': 239, 'name': 'Wallet/Purse'},
|
617 |
+
{'id': 240, 'name': 'Volleyball'},
|
618 |
+
{'id': 241, 'name': 'Deer'},
|
619 |
+
{'id': 242, 'name': 'Goose'},
|
620 |
+
{'id': 243, 'name': 'Tape'},
|
621 |
+
{'id': 244, 'name': 'Tablet'},
|
622 |
+
{'id': 245, 'name': 'Cosmetics'},
|
623 |
+
{'id': 246, 'name': 'Trumpet'},
|
624 |
+
{'id': 247, 'name': 'Pineapple'},
|
625 |
+
{'id': 248, 'name': 'Golf Ball'},
|
626 |
+
{'id': 249, 'name': 'Ambulance'},
|
627 |
+
{'id': 250, 'name': 'Parking meter'},
|
628 |
+
{'id': 251, 'name': 'Mango'},
|
629 |
+
{'id': 252, 'name': 'Key'},
|
630 |
+
{'id': 253, 'name': 'Hurdle'},
|
631 |
+
{'id': 254, 'name': 'Fishing Rod'},
|
632 |
+
{'id': 255, 'name': 'Medal'},
|
633 |
+
{'id': 256, 'name': 'Flute'},
|
634 |
+
{'id': 257, 'name': 'Brush'},
|
635 |
+
{'id': 258, 'name': 'Penguin'},
|
636 |
+
{'id': 259, 'name': 'Megaphone'},
|
637 |
+
{'id': 260, 'name': 'Corn'},
|
638 |
+
{'id': 261, 'name': 'Lettuce'},
|
639 |
+
{'id': 262, 'name': 'Garlic'},
|
640 |
+
{'id': 263, 'name': 'Swan'},
|
641 |
+
{'id': 264, 'name': 'Helicopter'},
|
642 |
+
{'id': 265, 'name': 'Green Onion'},
|
643 |
+
{'id': 266, 'name': 'Sandwich'},
|
644 |
+
{'id': 267, 'name': 'Nuts'},
|
645 |
+
{'id': 268, 'name': 'Speed Limit Sign'},
|
646 |
+
{'id': 269, 'name': 'Induction Cooker'},
|
647 |
+
{'id': 270, 'name': 'Broom'},
|
648 |
+
{'id': 271, 'name': 'Trombone'},
|
649 |
+
{'id': 272, 'name': 'Plum'},
|
650 |
+
{'id': 273, 'name': 'Rickshaw'},
|
651 |
+
{'id': 274, 'name': 'Goldfish'},
|
652 |
+
{'id': 275, 'name': 'Kiwi fruit'},
|
653 |
+
{'id': 276, 'name': 'Router/modem'},
|
654 |
+
{'id': 277, 'name': 'Poker Card'},
|
655 |
+
{'id': 278, 'name': 'Toaster'},
|
656 |
+
{'id': 279, 'name': 'Shrimp'},
|
657 |
+
{'id': 280, 'name': 'Sushi'},
|
658 |
+
{'id': 281, 'name': 'Cheese'},
|
659 |
+
{'id': 282, 'name': 'Notepaper'},
|
660 |
+
{'id': 283, 'name': 'Cherry'},
|
661 |
+
{'id': 284, 'name': 'Pliers'},
|
662 |
+
{'id': 285, 'name': 'CD'},
|
663 |
+
{'id': 286, 'name': 'Pasta'},
|
664 |
+
{'id': 287, 'name': 'Hammer'},
|
665 |
+
{'id': 288, 'name': 'Cue'},
|
666 |
+
{'id': 289, 'name': 'Avocado'},
|
667 |
+
{'id': 290, 'name': 'Hami melon'},
|
668 |
+
{'id': 291, 'name': 'Flask'},
|
669 |
+
{'id': 292, 'name': 'Mushroom'},
|
670 |
+
{'id': 293, 'name': 'Screwdriver'},
|
671 |
+
{'id': 294, 'name': 'Soap'},
|
672 |
+
{'id': 295, 'name': 'Recorder'},
|
673 |
+
{'id': 296, 'name': 'Bear'},
|
674 |
+
{'id': 297, 'name': 'Eggplant'},
|
675 |
+
{'id': 298, 'name': 'Board Eraser'},
|
676 |
+
{'id': 299, 'name': 'Coconut'},
|
677 |
+
{'id': 300, 'name': 'Tape Measure/ Ruler'},
|
678 |
+
{'id': 301, 'name': 'Pig'},
|
679 |
+
{'id': 302, 'name': 'Showerhead'},
|
680 |
+
{'id': 303, 'name': 'Globe'},
|
681 |
+
{'id': 304, 'name': 'Chips'},
|
682 |
+
{'id': 305, 'name': 'Steak'},
|
683 |
+
{'id': 306, 'name': 'Crosswalk Sign'},
|
684 |
+
{'id': 307, 'name': 'Stapler'},
|
685 |
+
{'id': 308, 'name': 'Camel'},
|
686 |
+
{'id': 309, 'name': 'Formula 1 '},
|
687 |
+
{'id': 310, 'name': 'Pomegranate'},
|
688 |
+
{'id': 311, 'name': 'Dishwasher'},
|
689 |
+
{'id': 312, 'name': 'Crab'},
|
690 |
+
{'id': 313, 'name': 'Hoverboard'},
|
691 |
+
{'id': 314, 'name': 'Meatball'},
|
692 |
+
{'id': 315, 'name': 'Rice Cooker'},
|
693 |
+
{'id': 316, 'name': 'Tuba'},
|
694 |
+
{'id': 317, 'name': 'Calculator'},
|
695 |
+
{'id': 318, 'name': 'Papaya'},
|
696 |
+
{'id': 319, 'name': 'Antelope'},
|
697 |
+
{'id': 320, 'name': 'Parrot'},
|
698 |
+
{'id': 321, 'name': 'Seal'},
|
699 |
+
{'id': 322, 'name': 'Butterfly'},
|
700 |
+
{'id': 323, 'name': 'Dumbbell'},
|
701 |
+
{'id': 324, 'name': 'Donkey'},
|
702 |
+
{'id': 325, 'name': 'Lion'},
|
703 |
+
{'id': 326, 'name': 'Urinal'},
|
704 |
+
{'id': 327, 'name': 'Dolphin'},
|
705 |
+
{'id': 328, 'name': 'Electric Drill'},
|
706 |
+
{'id': 329, 'name': 'Hair Dryer'},
|
707 |
+
{'id': 330, 'name': 'Egg tart'},
|
708 |
+
{'id': 331, 'name': 'Jellyfish'},
|
709 |
+
{'id': 332, 'name': 'Treadmill'},
|
710 |
+
{'id': 333, 'name': 'Lighter'},
|
711 |
+
{'id': 334, 'name': 'Grapefruit'},
|
712 |
+
{'id': 335, 'name': 'Game board'},
|
713 |
+
{'id': 336, 'name': 'Mop'},
|
714 |
+
{'id': 337, 'name': 'Radish'},
|
715 |
+
{'id': 338, 'name': 'Baozi'},
|
716 |
+
{'id': 339, 'name': 'Target'},
|
717 |
+
{'id': 340, 'name': 'French'},
|
718 |
+
{'id': 341, 'name': 'Spring Rolls'},
|
719 |
+
{'id': 342, 'name': 'Monkey'},
|
720 |
+
{'id': 343, 'name': 'Rabbit'},
|
721 |
+
{'id': 344, 'name': 'Pencil Case'},
|
722 |
+
{'id': 345, 'name': 'Yak'},
|
723 |
+
{'id': 346, 'name': 'Red Cabbage'},
|
724 |
+
{'id': 347, 'name': 'Binoculars'},
|
725 |
+
{'id': 348, 'name': 'Asparagus'},
|
726 |
+
{'id': 349, 'name': 'Barbell'},
|
727 |
+
{'id': 350, 'name': 'Scallop'},
|
728 |
+
{'id': 351, 'name': 'Noddles'},
|
729 |
+
{'id': 352, 'name': 'Comb'},
|
730 |
+
{'id': 353, 'name': 'Dumpling'},
|
731 |
+
{'id': 354, 'name': 'Oyster'},
|
732 |
+
{'id': 355, 'name': 'Table Tennis paddle'},
|
733 |
+
{'id': 356, 'name': 'Cosmetics Brush/Eyeliner Pencil'},
|
734 |
+
{'id': 357, 'name': 'Chainsaw'},
|
735 |
+
{'id': 358, 'name': 'Eraser'},
|
736 |
+
{'id': 359, 'name': 'Lobster'},
|
737 |
+
{'id': 360, 'name': 'Durian'},
|
738 |
+
{'id': 361, 'name': 'Okra'},
|
739 |
+
{'id': 362, 'name': 'Lipstick'},
|
740 |
+
{'id': 363, 'name': 'Cosmetics Mirror'},
|
741 |
+
{'id': 364, 'name': 'Curling'},
|
742 |
+
{'id': 365, 'name': 'Table Tennis '},
|
743 |
+
]
|
744 |
+
|
745 |
+
|
746 |
+
def _get_builtin_metadata():
|
747 |
+
id_to_name = {x['id']: x['name'] for x in categories_v2_fix}
|
748 |
+
thing_dataset_id_to_contiguous_id = {
|
749 |
+
x['id']: i for i, x in enumerate(
|
750 |
+
sorted(categories_v2_fix, key=lambda x: x['id']))}
|
751 |
+
thing_classes = [id_to_name[k] for k in sorted(id_to_name)]
|
752 |
+
return {
|
753 |
+
"thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
|
754 |
+
"thing_classes": thing_classes}
|
755 |
+
|
756 |
+
|
757 |
+
_PREDEFINED_SPLITS_OBJECTS365 = {
|
758 |
+
"objects365_v2_train": ("objects365/train", "objects365/annotations/zhiyuan_objv2_train_fixname_fixmiss.json"),
|
759 |
+
# 80,000 images, 1,240,587 annotations
|
760 |
+
"objects365_v2_val": ("objects365/val", "objects365/annotations/zhiyuan_objv2_val_fixname.json"),
|
761 |
+
"objects365_v2_val_rare": ("objects365/val", "objects365/annotations/zhiyuan_objv2_val_fixname_rare.json"),
|
762 |
+
}
|
763 |
+
|
764 |
+
for key, (image_root, json_file) in _PREDEFINED_SPLITS_OBJECTS365.items():
|
765 |
+
register_coco_instances(
|
766 |
+
key,
|
767 |
+
_get_builtin_metadata(),
|
768 |
+
os.path.join("datasets", json_file) if "://" not in json_file else json_file,
|
769 |
+
os.path.join("datasets", image_root),
|
770 |
+
)
|
detic/data/datasets/oid.py
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Part of the code is from https://github.com/xingyizhou/UniDet/blob/master/projects/UniDet/unidet/data/datasets/oid.py
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
from .register_oid import register_oid_instances
|
4 |
+
import os
|
5 |
+
|
6 |
+
categories = [
|
7 |
+
{'id': 1, 'name': 'Infant bed', 'freebase_id': '/m/061hd_'},
|
8 |
+
{'id': 2, 'name': 'Rose', 'freebase_id': '/m/06m11'},
|
9 |
+
{'id': 3, 'name': 'Flag', 'freebase_id': '/m/03120'},
|
10 |
+
{'id': 4, 'name': 'Flashlight', 'freebase_id': '/m/01kb5b'},
|
11 |
+
{'id': 5, 'name': 'Sea turtle', 'freebase_id': '/m/0120dh'},
|
12 |
+
{'id': 6, 'name': 'Camera', 'freebase_id': '/m/0dv5r'},
|
13 |
+
{'id': 7, 'name': 'Animal', 'freebase_id': '/m/0jbk'},
|
14 |
+
{'id': 8, 'name': 'Glove', 'freebase_id': '/m/0174n1'},
|
15 |
+
{'id': 9, 'name': 'Crocodile', 'freebase_id': '/m/09f_2'},
|
16 |
+
{'id': 10, 'name': 'Cattle', 'freebase_id': '/m/01xq0k1'},
|
17 |
+
{'id': 11, 'name': 'House', 'freebase_id': '/m/03jm5'},
|
18 |
+
{'id': 12, 'name': 'Guacamole', 'freebase_id': '/m/02g30s'},
|
19 |
+
{'id': 13, 'name': 'Penguin', 'freebase_id': '/m/05z6w'},
|
20 |
+
{'id': 14, 'name': 'Vehicle registration plate', 'freebase_id': '/m/01jfm_'},
|
21 |
+
{'id': 15, 'name': 'Bench', 'freebase_id': '/m/076lb9'},
|
22 |
+
{'id': 16, 'name': 'Ladybug', 'freebase_id': '/m/0gj37'},
|
23 |
+
{'id': 17, 'name': 'Human nose', 'freebase_id': '/m/0k0pj'},
|
24 |
+
{'id': 18, 'name': 'Watermelon', 'freebase_id': '/m/0kpqd'},
|
25 |
+
{'id': 19, 'name': 'Flute', 'freebase_id': '/m/0l14j_'},
|
26 |
+
{'id': 20, 'name': 'Butterfly', 'freebase_id': '/m/0cyf8'},
|
27 |
+
{'id': 21, 'name': 'Washing machine', 'freebase_id': '/m/0174k2'},
|
28 |
+
{'id': 22, 'name': 'Raccoon', 'freebase_id': '/m/0dq75'},
|
29 |
+
{'id': 23, 'name': 'Segway', 'freebase_id': '/m/076bq'},
|
30 |
+
{'id': 24, 'name': 'Taco', 'freebase_id': '/m/07crc'},
|
31 |
+
{'id': 25, 'name': 'Jellyfish', 'freebase_id': '/m/0d8zb'},
|
32 |
+
{'id': 26, 'name': 'Cake', 'freebase_id': '/m/0fszt'},
|
33 |
+
{'id': 27, 'name': 'Pen', 'freebase_id': '/m/0k1tl'},
|
34 |
+
{'id': 28, 'name': 'Cannon', 'freebase_id': '/m/020kz'},
|
35 |
+
{'id': 29, 'name': 'Bread', 'freebase_id': '/m/09728'},
|
36 |
+
{'id': 30, 'name': 'Tree', 'freebase_id': '/m/07j7r'},
|
37 |
+
{'id': 31, 'name': 'Shellfish', 'freebase_id': '/m/0fbdv'},
|
38 |
+
{'id': 32, 'name': 'Bed', 'freebase_id': '/m/03ssj5'},
|
39 |
+
{'id': 33, 'name': 'Hamster', 'freebase_id': '/m/03qrc'},
|
40 |
+
{'id': 34, 'name': 'Hat', 'freebase_id': '/m/02dl1y'},
|
41 |
+
{'id': 35, 'name': 'Toaster', 'freebase_id': '/m/01k6s3'},
|
42 |
+
{'id': 36, 'name': 'Sombrero', 'freebase_id': '/m/02jfl0'},
|
43 |
+
{'id': 37, 'name': 'Tiara', 'freebase_id': '/m/01krhy'},
|
44 |
+
{'id': 38, 'name': 'Bowl', 'freebase_id': '/m/04kkgm'},
|
45 |
+
{'id': 39, 'name': 'Dragonfly', 'freebase_id': '/m/0ft9s'},
|
46 |
+
{'id': 40, 'name': 'Moths and butterflies', 'freebase_id': '/m/0d_2m'},
|
47 |
+
{'id': 41, 'name': 'Antelope', 'freebase_id': '/m/0czz2'},
|
48 |
+
{'id': 42, 'name': 'Vegetable', 'freebase_id': '/m/0f4s2w'},
|
49 |
+
{'id': 43, 'name': 'Torch', 'freebase_id': '/m/07dd4'},
|
50 |
+
{'id': 44, 'name': 'Building', 'freebase_id': '/m/0cgh4'},
|
51 |
+
{'id': 45, 'name': 'Power plugs and sockets', 'freebase_id': '/m/03bbps'},
|
52 |
+
{'id': 46, 'name': 'Blender', 'freebase_id': '/m/02pjr4'},
|
53 |
+
{'id': 47, 'name': 'Billiard table', 'freebase_id': '/m/04p0qw'},
|
54 |
+
{'id': 48, 'name': 'Cutting board', 'freebase_id': '/m/02pdsw'},
|
55 |
+
{'id': 49, 'name': 'Bronze sculpture', 'freebase_id': '/m/01yx86'},
|
56 |
+
{'id': 50, 'name': 'Turtle', 'freebase_id': '/m/09dzg'},
|
57 |
+
{'id': 51, 'name': 'Broccoli', 'freebase_id': '/m/0hkxq'},
|
58 |
+
{'id': 52, 'name': 'Tiger', 'freebase_id': '/m/07dm6'},
|
59 |
+
{'id': 53, 'name': 'Mirror', 'freebase_id': '/m/054_l'},
|
60 |
+
{'id': 54, 'name': 'Bear', 'freebase_id': '/m/01dws'},
|
61 |
+
{'id': 55, 'name': 'Zucchini', 'freebase_id': '/m/027pcv'},
|
62 |
+
{'id': 56, 'name': 'Dress', 'freebase_id': '/m/01d40f'},
|
63 |
+
{'id': 57, 'name': 'Volleyball', 'freebase_id': '/m/02rgn06'},
|
64 |
+
{'id': 58, 'name': 'Guitar', 'freebase_id': '/m/0342h'},
|
65 |
+
{'id': 59, 'name': 'Reptile', 'freebase_id': '/m/06bt6'},
|
66 |
+
{'id': 60, 'name': 'Golf cart', 'freebase_id': '/m/0323sq'},
|
67 |
+
{'id': 61, 'name': 'Tart', 'freebase_id': '/m/02zvsm'},
|
68 |
+
{'id': 62, 'name': 'Fedora', 'freebase_id': '/m/02fq_6'},
|
69 |
+
{'id': 63, 'name': 'Carnivore', 'freebase_id': '/m/01lrl'},
|
70 |
+
{'id': 64, 'name': 'Car', 'freebase_id': '/m/0k4j'},
|
71 |
+
{'id': 65, 'name': 'Lighthouse', 'freebase_id': '/m/04h7h'},
|
72 |
+
{'id': 66, 'name': 'Coffeemaker', 'freebase_id': '/m/07xyvk'},
|
73 |
+
{'id': 67, 'name': 'Food processor', 'freebase_id': '/m/03y6mg'},
|
74 |
+
{'id': 68, 'name': 'Truck', 'freebase_id': '/m/07r04'},
|
75 |
+
{'id': 69, 'name': 'Bookcase', 'freebase_id': '/m/03__z0'},
|
76 |
+
{'id': 70, 'name': 'Surfboard', 'freebase_id': '/m/019w40'},
|
77 |
+
{'id': 71, 'name': 'Footwear', 'freebase_id': '/m/09j5n'},
|
78 |
+
{'id': 72, 'name': 'Bench', 'freebase_id': '/m/0cvnqh'},
|
79 |
+
{'id': 73, 'name': 'Necklace', 'freebase_id': '/m/01llwg'},
|
80 |
+
{'id': 74, 'name': 'Flower', 'freebase_id': '/m/0c9ph5'},
|
81 |
+
{'id': 75, 'name': 'Radish', 'freebase_id': '/m/015x5n'},
|
82 |
+
{'id': 76, 'name': 'Marine mammal', 'freebase_id': '/m/0gd2v'},
|
83 |
+
{'id': 77, 'name': 'Frying pan', 'freebase_id': '/m/04v6l4'},
|
84 |
+
{'id': 78, 'name': 'Tap', 'freebase_id': '/m/02jz0l'},
|
85 |
+
{'id': 79, 'name': 'Peach', 'freebase_id': '/m/0dj6p'},
|
86 |
+
{'id': 80, 'name': 'Knife', 'freebase_id': '/m/04ctx'},
|
87 |
+
{'id': 81, 'name': 'Handbag', 'freebase_id': '/m/080hkjn'},
|
88 |
+
{'id': 82, 'name': 'Laptop', 'freebase_id': '/m/01c648'},
|
89 |
+
{'id': 83, 'name': 'Tent', 'freebase_id': '/m/01j61q'},
|
90 |
+
{'id': 84, 'name': 'Ambulance', 'freebase_id': '/m/012n7d'},
|
91 |
+
{'id': 85, 'name': 'Christmas tree', 'freebase_id': '/m/025nd'},
|
92 |
+
{'id': 86, 'name': 'Eagle', 'freebase_id': '/m/09csl'},
|
93 |
+
{'id': 87, 'name': 'Limousine', 'freebase_id': '/m/01lcw4'},
|
94 |
+
{'id': 88, 'name': 'Kitchen & dining room table', 'freebase_id': '/m/0h8n5zk'},
|
95 |
+
{'id': 89, 'name': 'Polar bear', 'freebase_id': '/m/0633h'},
|
96 |
+
{'id': 90, 'name': 'Tower', 'freebase_id': '/m/01fdzj'},
|
97 |
+
{'id': 91, 'name': 'Football', 'freebase_id': '/m/01226z'},
|
98 |
+
{'id': 92, 'name': 'Willow', 'freebase_id': '/m/0mw_6'},
|
99 |
+
{'id': 93, 'name': 'Human head', 'freebase_id': '/m/04hgtk'},
|
100 |
+
{'id': 94, 'name': 'Stop sign', 'freebase_id': '/m/02pv19'},
|
101 |
+
{'id': 95, 'name': 'Banana', 'freebase_id': '/m/09qck'},
|
102 |
+
{'id': 96, 'name': 'Mixer', 'freebase_id': '/m/063rgb'},
|
103 |
+
{'id': 97, 'name': 'Binoculars', 'freebase_id': '/m/0lt4_'},
|
104 |
+
{'id': 98, 'name': 'Dessert', 'freebase_id': '/m/0270h'},
|
105 |
+
{'id': 99, 'name': 'Bee', 'freebase_id': '/m/01h3n'},
|
106 |
+
{'id': 100, 'name': 'Chair', 'freebase_id': '/m/01mzpv'},
|
107 |
+
{'id': 101, 'name': 'Wood-burning stove', 'freebase_id': '/m/04169hn'},
|
108 |
+
{'id': 102, 'name': 'Flowerpot', 'freebase_id': '/m/0fm3zh'},
|
109 |
+
{'id': 103, 'name': 'Beaker', 'freebase_id': '/m/0d20w4'},
|
110 |
+
{'id': 104, 'name': 'Oyster', 'freebase_id': '/m/0_cp5'},
|
111 |
+
{'id': 105, 'name': 'Woodpecker', 'freebase_id': '/m/01dy8n'},
|
112 |
+
{'id': 106, 'name': 'Harp', 'freebase_id': '/m/03m5k'},
|
113 |
+
{'id': 107, 'name': 'Bathtub', 'freebase_id': '/m/03dnzn'},
|
114 |
+
{'id': 108, 'name': 'Wall clock', 'freebase_id': '/m/0h8mzrc'},
|
115 |
+
{'id': 109, 'name': 'Sports uniform', 'freebase_id': '/m/0h8mhzd'},
|
116 |
+
{'id': 110, 'name': 'Rhinoceros', 'freebase_id': '/m/03d443'},
|
117 |
+
{'id': 111, 'name': 'Beehive', 'freebase_id': '/m/01gllr'},
|
118 |
+
{'id': 112, 'name': 'Cupboard', 'freebase_id': '/m/0642b4'},
|
119 |
+
{'id': 113, 'name': 'Chicken', 'freebase_id': '/m/09b5t'},
|
120 |
+
{'id': 114, 'name': 'Man', 'freebase_id': '/m/04yx4'},
|
121 |
+
{'id': 115, 'name': 'Blue jay', 'freebase_id': '/m/01f8m5'},
|
122 |
+
{'id': 116, 'name': 'Cucumber', 'freebase_id': '/m/015x4r'},
|
123 |
+
{'id': 117, 'name': 'Balloon', 'freebase_id': '/m/01j51'},
|
124 |
+
{'id': 118, 'name': 'Kite', 'freebase_id': '/m/02zt3'},
|
125 |
+
{'id': 119, 'name': 'Fireplace', 'freebase_id': '/m/03tw93'},
|
126 |
+
{'id': 120, 'name': 'Lantern', 'freebase_id': '/m/01jfsr'},
|
127 |
+
{'id': 121, 'name': 'Missile', 'freebase_id': '/m/04ylt'},
|
128 |
+
{'id': 122, 'name': 'Book', 'freebase_id': '/m/0bt_c3'},
|
129 |
+
{'id': 123, 'name': 'Spoon', 'freebase_id': '/m/0cmx8'},
|
130 |
+
{'id': 124, 'name': 'Grapefruit', 'freebase_id': '/m/0hqkz'},
|
131 |
+
{'id': 125, 'name': 'Squirrel', 'freebase_id': '/m/071qp'},
|
132 |
+
{'id': 126, 'name': 'Orange', 'freebase_id': '/m/0cyhj_'},
|
133 |
+
{'id': 127, 'name': 'Coat', 'freebase_id': '/m/01xygc'},
|
134 |
+
{'id': 128, 'name': 'Punching bag', 'freebase_id': '/m/0420v5'},
|
135 |
+
{'id': 129, 'name': 'Zebra', 'freebase_id': '/m/0898b'},
|
136 |
+
{'id': 130, 'name': 'Billboard', 'freebase_id': '/m/01knjb'},
|
137 |
+
{'id': 131, 'name': 'Bicycle', 'freebase_id': '/m/0199g'},
|
138 |
+
{'id': 132, 'name': 'Door handle', 'freebase_id': '/m/03c7gz'},
|
139 |
+
{'id': 133, 'name': 'Mechanical fan', 'freebase_id': '/m/02x984l'},
|
140 |
+
{'id': 134, 'name': 'Ring binder', 'freebase_id': '/m/04zwwv'},
|
141 |
+
{'id': 135, 'name': 'Table', 'freebase_id': '/m/04bcr3'},
|
142 |
+
{'id': 136, 'name': 'Parrot', 'freebase_id': '/m/0gv1x'},
|
143 |
+
{'id': 137, 'name': 'Sock', 'freebase_id': '/m/01nq26'},
|
144 |
+
{'id': 138, 'name': 'Vase', 'freebase_id': '/m/02s195'},
|
145 |
+
{'id': 139, 'name': 'Weapon', 'freebase_id': '/m/083kb'},
|
146 |
+
{'id': 140, 'name': 'Shotgun', 'freebase_id': '/m/06nrc'},
|
147 |
+
{'id': 141, 'name': 'Glasses', 'freebase_id': '/m/0jyfg'},
|
148 |
+
{'id': 142, 'name': 'Seahorse', 'freebase_id': '/m/0nybt'},
|
149 |
+
{'id': 143, 'name': 'Belt', 'freebase_id': '/m/0176mf'},
|
150 |
+
{'id': 144, 'name': 'Watercraft', 'freebase_id': '/m/01rzcn'},
|
151 |
+
{'id': 145, 'name': 'Window', 'freebase_id': '/m/0d4v4'},
|
152 |
+
{'id': 146, 'name': 'Giraffe', 'freebase_id': '/m/03bk1'},
|
153 |
+
{'id': 147, 'name': 'Lion', 'freebase_id': '/m/096mb'},
|
154 |
+
{'id': 148, 'name': 'Tire', 'freebase_id': '/m/0h9mv'},
|
155 |
+
{'id': 149, 'name': 'Vehicle', 'freebase_id': '/m/07yv9'},
|
156 |
+
{'id': 150, 'name': 'Canoe', 'freebase_id': '/m/0ph39'},
|
157 |
+
{'id': 151, 'name': 'Tie', 'freebase_id': '/m/01rkbr'},
|
158 |
+
{'id': 152, 'name': 'Shelf', 'freebase_id': '/m/0gjbg72'},
|
159 |
+
{'id': 153, 'name': 'Picture frame', 'freebase_id': '/m/06z37_'},
|
160 |
+
{'id': 154, 'name': 'Printer', 'freebase_id': '/m/01m4t'},
|
161 |
+
{'id': 155, 'name': 'Human leg', 'freebase_id': '/m/035r7c'},
|
162 |
+
{'id': 156, 'name': 'Boat', 'freebase_id': '/m/019jd'},
|
163 |
+
{'id': 157, 'name': 'Slow cooker', 'freebase_id': '/m/02tsc9'},
|
164 |
+
{'id': 158, 'name': 'Croissant', 'freebase_id': '/m/015wgc'},
|
165 |
+
{'id': 159, 'name': 'Candle', 'freebase_id': '/m/0c06p'},
|
166 |
+
{'id': 160, 'name': 'Pancake', 'freebase_id': '/m/01dwwc'},
|
167 |
+
{'id': 161, 'name': 'Pillow', 'freebase_id': '/m/034c16'},
|
168 |
+
{'id': 162, 'name': 'Coin', 'freebase_id': '/m/0242l'},
|
169 |
+
{'id': 163, 'name': 'Stretcher', 'freebase_id': '/m/02lbcq'},
|
170 |
+
{'id': 164, 'name': 'Sandal', 'freebase_id': '/m/03nfch'},
|
171 |
+
{'id': 165, 'name': 'Woman', 'freebase_id': '/m/03bt1vf'},
|
172 |
+
{'id': 166, 'name': 'Stairs', 'freebase_id': '/m/01lynh'},
|
173 |
+
{'id': 167, 'name': 'Harpsichord', 'freebase_id': '/m/03q5t'},
|
174 |
+
{'id': 168, 'name': 'Stool', 'freebase_id': '/m/0fqt361'},
|
175 |
+
{'id': 169, 'name': 'Bus', 'freebase_id': '/m/01bjv'},
|
176 |
+
{'id': 170, 'name': 'Suitcase', 'freebase_id': '/m/01s55n'},
|
177 |
+
{'id': 171, 'name': 'Human mouth', 'freebase_id': '/m/0283dt1'},
|
178 |
+
{'id': 172, 'name': 'Juice', 'freebase_id': '/m/01z1kdw'},
|
179 |
+
{'id': 173, 'name': 'Skull', 'freebase_id': '/m/016m2d'},
|
180 |
+
{'id': 174, 'name': 'Door', 'freebase_id': '/m/02dgv'},
|
181 |
+
{'id': 175, 'name': 'Violin', 'freebase_id': '/m/07y_7'},
|
182 |
+
{'id': 176, 'name': 'Chopsticks', 'freebase_id': '/m/01_5g'},
|
183 |
+
{'id': 177, 'name': 'Digital clock', 'freebase_id': '/m/06_72j'},
|
184 |
+
{'id': 178, 'name': 'Sunflower', 'freebase_id': '/m/0ftb8'},
|
185 |
+
{'id': 179, 'name': 'Leopard', 'freebase_id': '/m/0c29q'},
|
186 |
+
{'id': 180, 'name': 'Bell pepper', 'freebase_id': '/m/0jg57'},
|
187 |
+
{'id': 181, 'name': 'Harbor seal', 'freebase_id': '/m/02l8p9'},
|
188 |
+
{'id': 182, 'name': 'Snake', 'freebase_id': '/m/078jl'},
|
189 |
+
{'id': 183, 'name': 'Sewing machine', 'freebase_id': '/m/0llzx'},
|
190 |
+
{'id': 184, 'name': 'Goose', 'freebase_id': '/m/0dbvp'},
|
191 |
+
{'id': 185, 'name': 'Helicopter', 'freebase_id': '/m/09ct_'},
|
192 |
+
{'id': 186, 'name': 'Seat belt', 'freebase_id': '/m/0dkzw'},
|
193 |
+
{'id': 187, 'name': 'Coffee cup', 'freebase_id': '/m/02p5f1q'},
|
194 |
+
{'id': 188, 'name': 'Microwave oven', 'freebase_id': '/m/0fx9l'},
|
195 |
+
{'id': 189, 'name': 'Hot dog', 'freebase_id': '/m/01b9xk'},
|
196 |
+
{'id': 190, 'name': 'Countertop', 'freebase_id': '/m/0b3fp9'},
|
197 |
+
{'id': 191, 'name': 'Serving tray', 'freebase_id': '/m/0h8n27j'},
|
198 |
+
{'id': 192, 'name': 'Dog bed', 'freebase_id': '/m/0h8n6f9'},
|
199 |
+
{'id': 193, 'name': 'Beer', 'freebase_id': '/m/01599'},
|
200 |
+
{'id': 194, 'name': 'Sunglasses', 'freebase_id': '/m/017ftj'},
|
201 |
+
{'id': 195, 'name': 'Golf ball', 'freebase_id': '/m/044r5d'},
|
202 |
+
{'id': 196, 'name': 'Waffle', 'freebase_id': '/m/01dwsz'},
|
203 |
+
{'id': 197, 'name': 'Palm tree', 'freebase_id': '/m/0cdl1'},
|
204 |
+
{'id': 198, 'name': 'Trumpet', 'freebase_id': '/m/07gql'},
|
205 |
+
{'id': 199, 'name': 'Ruler', 'freebase_id': '/m/0hdln'},
|
206 |
+
{'id': 200, 'name': 'Helmet', 'freebase_id': '/m/0zvk5'},
|
207 |
+
{'id': 201, 'name': 'Ladder', 'freebase_id': '/m/012w5l'},
|
208 |
+
{'id': 202, 'name': 'Office building', 'freebase_id': '/m/021sj1'},
|
209 |
+
{'id': 203, 'name': 'Tablet computer', 'freebase_id': '/m/0bh9flk'},
|
210 |
+
{'id': 204, 'name': 'Toilet paper', 'freebase_id': '/m/09gtd'},
|
211 |
+
{'id': 205, 'name': 'Pomegranate', 'freebase_id': '/m/0jwn_'},
|
212 |
+
{'id': 206, 'name': 'Skirt', 'freebase_id': '/m/02wv6h6'},
|
213 |
+
{'id': 207, 'name': 'Gas stove', 'freebase_id': '/m/02wv84t'},
|
214 |
+
{'id': 208, 'name': 'Cookie', 'freebase_id': '/m/021mn'},
|
215 |
+
{'id': 209, 'name': 'Cart', 'freebase_id': '/m/018p4k'},
|
216 |
+
{'id': 210, 'name': 'Raven', 'freebase_id': '/m/06j2d'},
|
217 |
+
{'id': 211, 'name': 'Egg', 'freebase_id': '/m/033cnk'},
|
218 |
+
{'id': 212, 'name': 'Burrito', 'freebase_id': '/m/01j3zr'},
|
219 |
+
{'id': 213, 'name': 'Goat', 'freebase_id': '/m/03fwl'},
|
220 |
+
{'id': 214, 'name': 'Kitchen knife', 'freebase_id': '/m/058qzx'},
|
221 |
+
{'id': 215, 'name': 'Skateboard', 'freebase_id': '/m/06_fw'},
|
222 |
+
{'id': 216, 'name': 'Salt and pepper shakers', 'freebase_id': '/m/02x8cch'},
|
223 |
+
{'id': 217, 'name': 'Lynx', 'freebase_id': '/m/04g2r'},
|
224 |
+
{'id': 218, 'name': 'Boot', 'freebase_id': '/m/01b638'},
|
225 |
+
{'id': 219, 'name': 'Platter', 'freebase_id': '/m/099ssp'},
|
226 |
+
{'id': 220, 'name': 'Ski', 'freebase_id': '/m/071p9'},
|
227 |
+
{'id': 221, 'name': 'Swimwear', 'freebase_id': '/m/01gkx_'},
|
228 |
+
{'id': 222, 'name': 'Swimming pool', 'freebase_id': '/m/0b_rs'},
|
229 |
+
{'id': 223, 'name': 'Drinking straw', 'freebase_id': '/m/03v5tg'},
|
230 |
+
{'id': 224, 'name': 'Wrench', 'freebase_id': '/m/01j5ks'},
|
231 |
+
{'id': 225, 'name': 'Drum', 'freebase_id': '/m/026t6'},
|
232 |
+
{'id': 226, 'name': 'Ant', 'freebase_id': '/m/0_k2'},
|
233 |
+
{'id': 227, 'name': 'Human ear', 'freebase_id': '/m/039xj_'},
|
234 |
+
{'id': 228, 'name': 'Headphones', 'freebase_id': '/m/01b7fy'},
|
235 |
+
{'id': 229, 'name': 'Fountain', 'freebase_id': '/m/0220r2'},
|
236 |
+
{'id': 230, 'name': 'Bird', 'freebase_id': '/m/015p6'},
|
237 |
+
{'id': 231, 'name': 'Jeans', 'freebase_id': '/m/0fly7'},
|
238 |
+
{'id': 232, 'name': 'Television', 'freebase_id': '/m/07c52'},
|
239 |
+
{'id': 233, 'name': 'Crab', 'freebase_id': '/m/0n28_'},
|
240 |
+
{'id': 234, 'name': 'Microphone', 'freebase_id': '/m/0hg7b'},
|
241 |
+
{'id': 235, 'name': 'Home appliance', 'freebase_id': '/m/019dx1'},
|
242 |
+
{'id': 236, 'name': 'Snowplow', 'freebase_id': '/m/04vv5k'},
|
243 |
+
{'id': 237, 'name': 'Beetle', 'freebase_id': '/m/020jm'},
|
244 |
+
{'id': 238, 'name': 'Artichoke', 'freebase_id': '/m/047v4b'},
|
245 |
+
{'id': 239, 'name': 'Jet ski', 'freebase_id': '/m/01xs3r'},
|
246 |
+
{'id': 240, 'name': 'Stationary bicycle', 'freebase_id': '/m/03kt2w'},
|
247 |
+
{'id': 241, 'name': 'Human hair', 'freebase_id': '/m/03q69'},
|
248 |
+
{'id': 242, 'name': 'Brown bear', 'freebase_id': '/m/01dxs'},
|
249 |
+
{'id': 243, 'name': 'Starfish', 'freebase_id': '/m/01h8tj'},
|
250 |
+
{'id': 244, 'name': 'Fork', 'freebase_id': '/m/0dt3t'},
|
251 |
+
{'id': 245, 'name': 'Lobster', 'freebase_id': '/m/0cjq5'},
|
252 |
+
{'id': 246, 'name': 'Corded phone', 'freebase_id': '/m/0h8lkj8'},
|
253 |
+
{'id': 247, 'name': 'Drink', 'freebase_id': '/m/0271t'},
|
254 |
+
{'id': 248, 'name': 'Saucer', 'freebase_id': '/m/03q5c7'},
|
255 |
+
{'id': 249, 'name': 'Carrot', 'freebase_id': '/m/0fj52s'},
|
256 |
+
{'id': 250, 'name': 'Insect', 'freebase_id': '/m/03vt0'},
|
257 |
+
{'id': 251, 'name': 'Clock', 'freebase_id': '/m/01x3z'},
|
258 |
+
{'id': 252, 'name': 'Castle', 'freebase_id': '/m/0d5gx'},
|
259 |
+
{'id': 253, 'name': 'Tennis racket', 'freebase_id': '/m/0h8my_4'},
|
260 |
+
{'id': 254, 'name': 'Ceiling fan', 'freebase_id': '/m/03ldnb'},
|
261 |
+
{'id': 255, 'name': 'Asparagus', 'freebase_id': '/m/0cjs7'},
|
262 |
+
{'id': 256, 'name': 'Jaguar', 'freebase_id': '/m/0449p'},
|
263 |
+
{'id': 257, 'name': 'Musical instrument', 'freebase_id': '/m/04szw'},
|
264 |
+
{'id': 258, 'name': 'Train', 'freebase_id': '/m/07jdr'},
|
265 |
+
{'id': 259, 'name': 'Cat', 'freebase_id': '/m/01yrx'},
|
266 |
+
{'id': 260, 'name': 'Rifle', 'freebase_id': '/m/06c54'},
|
267 |
+
{'id': 261, 'name': 'Dumbbell', 'freebase_id': '/m/04h8sr'},
|
268 |
+
{'id': 262, 'name': 'Mobile phone', 'freebase_id': '/m/050k8'},
|
269 |
+
{'id': 263, 'name': 'Taxi', 'freebase_id': '/m/0pg52'},
|
270 |
+
{'id': 264, 'name': 'Shower', 'freebase_id': '/m/02f9f_'},
|
271 |
+
{'id': 265, 'name': 'Pitcher', 'freebase_id': '/m/054fyh'},
|
272 |
+
{'id': 266, 'name': 'Lemon', 'freebase_id': '/m/09k_b'},
|
273 |
+
{'id': 267, 'name': 'Invertebrate', 'freebase_id': '/m/03xxp'},
|
274 |
+
{'id': 268, 'name': 'Turkey', 'freebase_id': '/m/0jly1'},
|
275 |
+
{'id': 269, 'name': 'High heels', 'freebase_id': '/m/06k2mb'},
|
276 |
+
{'id': 270, 'name': 'Bust', 'freebase_id': '/m/04yqq2'},
|
277 |
+
{'id': 271, 'name': 'Elephant', 'freebase_id': '/m/0bwd_0j'},
|
278 |
+
{'id': 272, 'name': 'Scarf', 'freebase_id': '/m/02h19r'},
|
279 |
+
{'id': 273, 'name': 'Barrel', 'freebase_id': '/m/02zn6n'},
|
280 |
+
{'id': 274, 'name': 'Trombone', 'freebase_id': '/m/07c6l'},
|
281 |
+
{'id': 275, 'name': 'Pumpkin', 'freebase_id': '/m/05zsy'},
|
282 |
+
{'id': 276, 'name': 'Box', 'freebase_id': '/m/025dyy'},
|
283 |
+
{'id': 277, 'name': 'Tomato', 'freebase_id': '/m/07j87'},
|
284 |
+
{'id': 278, 'name': 'Frog', 'freebase_id': '/m/09ld4'},
|
285 |
+
{'id': 279, 'name': 'Bidet', 'freebase_id': '/m/01vbnl'},
|
286 |
+
{'id': 280, 'name': 'Human face', 'freebase_id': '/m/0dzct'},
|
287 |
+
{'id': 281, 'name': 'Houseplant', 'freebase_id': '/m/03fp41'},
|
288 |
+
{'id': 282, 'name': 'Van', 'freebase_id': '/m/0h2r6'},
|
289 |
+
{'id': 283, 'name': 'Shark', 'freebase_id': '/m/0by6g'},
|
290 |
+
{'id': 284, 'name': 'Ice cream', 'freebase_id': '/m/0cxn2'},
|
291 |
+
{'id': 285, 'name': 'Swim cap', 'freebase_id': '/m/04tn4x'},
|
292 |
+
{'id': 286, 'name': 'Falcon', 'freebase_id': '/m/0f6wt'},
|
293 |
+
{'id': 287, 'name': 'Ostrich', 'freebase_id': '/m/05n4y'},
|
294 |
+
{'id': 288, 'name': 'Handgun', 'freebase_id': '/m/0gxl3'},
|
295 |
+
{'id': 289, 'name': 'Whiteboard', 'freebase_id': '/m/02d9qx'},
|
296 |
+
{'id': 290, 'name': 'Lizard', 'freebase_id': '/m/04m9y'},
|
297 |
+
{'id': 291, 'name': 'Pasta', 'freebase_id': '/m/05z55'},
|
298 |
+
{'id': 292, 'name': 'Snowmobile', 'freebase_id': '/m/01x3jk'},
|
299 |
+
{'id': 293, 'name': 'Light bulb', 'freebase_id': '/m/0h8l4fh'},
|
300 |
+
{'id': 294, 'name': 'Window blind', 'freebase_id': '/m/031b6r'},
|
301 |
+
{'id': 295, 'name': 'Muffin', 'freebase_id': '/m/01tcjp'},
|
302 |
+
{'id': 296, 'name': 'Pretzel', 'freebase_id': '/m/01f91_'},
|
303 |
+
{'id': 297, 'name': 'Computer monitor', 'freebase_id': '/m/02522'},
|
304 |
+
{'id': 298, 'name': 'Horn', 'freebase_id': '/m/0319l'},
|
305 |
+
{'id': 299, 'name': 'Furniture', 'freebase_id': '/m/0c_jw'},
|
306 |
+
{'id': 300, 'name': 'Sandwich', 'freebase_id': '/m/0l515'},
|
307 |
+
{'id': 301, 'name': 'Fox', 'freebase_id': '/m/0306r'},
|
308 |
+
{'id': 302, 'name': 'Convenience store', 'freebase_id': '/m/0crjs'},
|
309 |
+
{'id': 303, 'name': 'Fish', 'freebase_id': '/m/0ch_cf'},
|
310 |
+
{'id': 304, 'name': 'Fruit', 'freebase_id': '/m/02xwb'},
|
311 |
+
{'id': 305, 'name': 'Earrings', 'freebase_id': '/m/01r546'},
|
312 |
+
{'id': 306, 'name': 'Curtain', 'freebase_id': '/m/03rszm'},
|
313 |
+
{'id': 307, 'name': 'Grape', 'freebase_id': '/m/0388q'},
|
314 |
+
{'id': 308, 'name': 'Sofa bed', 'freebase_id': '/m/03m3pdh'},
|
315 |
+
{'id': 309, 'name': 'Horse', 'freebase_id': '/m/03k3r'},
|
316 |
+
{'id': 310, 'name': 'Luggage and bags', 'freebase_id': '/m/0hf58v5'},
|
317 |
+
{'id': 311, 'name': 'Desk', 'freebase_id': '/m/01y9k5'},
|
318 |
+
{'id': 312, 'name': 'Crutch', 'freebase_id': '/m/05441v'},
|
319 |
+
{'id': 313, 'name': 'Bicycle helmet', 'freebase_id': '/m/03p3bw'},
|
320 |
+
{'id': 314, 'name': 'Tick', 'freebase_id': '/m/0175cv'},
|
321 |
+
{'id': 315, 'name': 'Airplane', 'freebase_id': '/m/0cmf2'},
|
322 |
+
{'id': 316, 'name': 'Canary', 'freebase_id': '/m/0ccs93'},
|
323 |
+
{'id': 317, 'name': 'Spatula', 'freebase_id': '/m/02d1br'},
|
324 |
+
{'id': 318, 'name': 'Watch', 'freebase_id': '/m/0gjkl'},
|
325 |
+
{'id': 319, 'name': 'Lily', 'freebase_id': '/m/0jqgx'},
|
326 |
+
{'id': 320, 'name': 'Kitchen appliance', 'freebase_id': '/m/0h99cwc'},
|
327 |
+
{'id': 321, 'name': 'Filing cabinet', 'freebase_id': '/m/047j0r'},
|
328 |
+
{'id': 322, 'name': 'Aircraft', 'freebase_id': '/m/0k5j'},
|
329 |
+
{'id': 323, 'name': 'Cake stand', 'freebase_id': '/m/0h8n6ft'},
|
330 |
+
{'id': 324, 'name': 'Candy', 'freebase_id': '/m/0gm28'},
|
331 |
+
{'id': 325, 'name': 'Sink', 'freebase_id': '/m/0130jx'},
|
332 |
+
{'id': 326, 'name': 'Mouse', 'freebase_id': '/m/04rmv'},
|
333 |
+
{'id': 327, 'name': 'Wine', 'freebase_id': '/m/081qc'},
|
334 |
+
{'id': 328, 'name': 'Wheelchair', 'freebase_id': '/m/0qmmr'},
|
335 |
+
{'id': 329, 'name': 'Goldfish', 'freebase_id': '/m/03fj2'},
|
336 |
+
{'id': 330, 'name': 'Refrigerator', 'freebase_id': '/m/040b_t'},
|
337 |
+
{'id': 331, 'name': 'French fries', 'freebase_id': '/m/02y6n'},
|
338 |
+
{'id': 332, 'name': 'Drawer', 'freebase_id': '/m/0fqfqc'},
|
339 |
+
{'id': 333, 'name': 'Treadmill', 'freebase_id': '/m/030610'},
|
340 |
+
{'id': 334, 'name': 'Picnic basket', 'freebase_id': '/m/07kng9'},
|
341 |
+
{'id': 335, 'name': 'Dice', 'freebase_id': '/m/029b3'},
|
342 |
+
{'id': 336, 'name': 'Cabbage', 'freebase_id': '/m/0fbw6'},
|
343 |
+
{'id': 337, 'name': 'Football helmet', 'freebase_id': '/m/07qxg_'},
|
344 |
+
{'id': 338, 'name': 'Pig', 'freebase_id': '/m/068zj'},
|
345 |
+
{'id': 339, 'name': 'Person', 'freebase_id': '/m/01g317'},
|
346 |
+
{'id': 340, 'name': 'Shorts', 'freebase_id': '/m/01bfm9'},
|
347 |
+
{'id': 341, 'name': 'Gondola', 'freebase_id': '/m/02068x'},
|
348 |
+
{'id': 342, 'name': 'Honeycomb', 'freebase_id': '/m/0fz0h'},
|
349 |
+
{'id': 343, 'name': 'Doughnut', 'freebase_id': '/m/0jy4k'},
|
350 |
+
{'id': 344, 'name': 'Chest of drawers', 'freebase_id': '/m/05kyg_'},
|
351 |
+
{'id': 345, 'name': 'Land vehicle', 'freebase_id': '/m/01prls'},
|
352 |
+
{'id': 346, 'name': 'Bat', 'freebase_id': '/m/01h44'},
|
353 |
+
{'id': 347, 'name': 'Monkey', 'freebase_id': '/m/08pbxl'},
|
354 |
+
{'id': 348, 'name': 'Dagger', 'freebase_id': '/m/02gzp'},
|
355 |
+
{'id': 349, 'name': 'Tableware', 'freebase_id': '/m/04brg2'},
|
356 |
+
{'id': 350, 'name': 'Human foot', 'freebase_id': '/m/031n1'},
|
357 |
+
{'id': 351, 'name': 'Mug', 'freebase_id': '/m/02jvh9'},
|
358 |
+
{'id': 352, 'name': 'Alarm clock', 'freebase_id': '/m/046dlr'},
|
359 |
+
{'id': 353, 'name': 'Pressure cooker', 'freebase_id': '/m/0h8ntjv'},
|
360 |
+
{'id': 354, 'name': 'Human hand', 'freebase_id': '/m/0k65p'},
|
361 |
+
{'id': 355, 'name': 'Tortoise', 'freebase_id': '/m/011k07'},
|
362 |
+
{'id': 356, 'name': 'Baseball glove', 'freebase_id': '/m/03grzl'},
|
363 |
+
{'id': 357, 'name': 'Sword', 'freebase_id': '/m/06y5r'},
|
364 |
+
{'id': 358, 'name': 'Pear', 'freebase_id': '/m/061_f'},
|
365 |
+
{'id': 359, 'name': 'Miniskirt', 'freebase_id': '/m/01cmb2'},
|
366 |
+
{'id': 360, 'name': 'Traffic sign', 'freebase_id': '/m/01mqdt'},
|
367 |
+
{'id': 361, 'name': 'Girl', 'freebase_id': '/m/05r655'},
|
368 |
+
{'id': 362, 'name': 'Roller skates', 'freebase_id': '/m/02p3w7d'},
|
369 |
+
{'id': 363, 'name': 'Dinosaur', 'freebase_id': '/m/029tx'},
|
370 |
+
{'id': 364, 'name': 'Porch', 'freebase_id': '/m/04m6gz'},
|
371 |
+
{'id': 365, 'name': 'Human beard', 'freebase_id': '/m/015h_t'},
|
372 |
+
{'id': 366, 'name': 'Submarine sandwich', 'freebase_id': '/m/06pcq'},
|
373 |
+
{'id': 367, 'name': 'Screwdriver', 'freebase_id': '/m/01bms0'},
|
374 |
+
{'id': 368, 'name': 'Strawberry', 'freebase_id': '/m/07fbm7'},
|
375 |
+
{'id': 369, 'name': 'Wine glass', 'freebase_id': '/m/09tvcd'},
|
376 |
+
{'id': 370, 'name': 'Seafood', 'freebase_id': '/m/06nwz'},
|
377 |
+
{'id': 371, 'name': 'Racket', 'freebase_id': '/m/0dv9c'},
|
378 |
+
{'id': 372, 'name': 'Wheel', 'freebase_id': '/m/083wq'},
|
379 |
+
{'id': 373, 'name': 'Sea lion', 'freebase_id': '/m/0gd36'},
|
380 |
+
{'id': 374, 'name': 'Toy', 'freebase_id': '/m/0138tl'},
|
381 |
+
{'id': 375, 'name': 'Tea', 'freebase_id': '/m/07clx'},
|
382 |
+
{'id': 376, 'name': 'Tennis ball', 'freebase_id': '/m/05ctyq'},
|
383 |
+
{'id': 377, 'name': 'Waste container', 'freebase_id': '/m/0bjyj5'},
|
384 |
+
{'id': 378, 'name': 'Mule', 'freebase_id': '/m/0dbzx'},
|
385 |
+
{'id': 379, 'name': 'Cricket ball', 'freebase_id': '/m/02ctlc'},
|
386 |
+
{'id': 380, 'name': 'Pineapple', 'freebase_id': '/m/0fp6w'},
|
387 |
+
{'id': 381, 'name': 'Coconut', 'freebase_id': '/m/0djtd'},
|
388 |
+
{'id': 382, 'name': 'Doll', 'freebase_id': '/m/0167gd'},
|
389 |
+
{'id': 383, 'name': 'Coffee table', 'freebase_id': '/m/078n6m'},
|
390 |
+
{'id': 384, 'name': 'Snowman', 'freebase_id': '/m/0152hh'},
|
391 |
+
{'id': 385, 'name': 'Lavender', 'freebase_id': '/m/04gth'},
|
392 |
+
{'id': 386, 'name': 'Shrimp', 'freebase_id': '/m/0ll1f78'},
|
393 |
+
{'id': 387, 'name': 'Maple', 'freebase_id': '/m/0cffdh'},
|
394 |
+
{'id': 388, 'name': 'Cowboy hat', 'freebase_id': '/m/025rp__'},
|
395 |
+
{'id': 389, 'name': 'Goggles', 'freebase_id': '/m/02_n6y'},
|
396 |
+
{'id': 390, 'name': 'Rugby ball', 'freebase_id': '/m/0wdt60w'},
|
397 |
+
{'id': 391, 'name': 'Caterpillar', 'freebase_id': '/m/0cydv'},
|
398 |
+
{'id': 392, 'name': 'Poster', 'freebase_id': '/m/01n5jq'},
|
399 |
+
{'id': 393, 'name': 'Rocket', 'freebase_id': '/m/09rvcxw'},
|
400 |
+
{'id': 394, 'name': 'Organ', 'freebase_id': '/m/013y1f'},
|
401 |
+
{'id': 395, 'name': 'Saxophone', 'freebase_id': '/m/06ncr'},
|
402 |
+
{'id': 396, 'name': 'Traffic light', 'freebase_id': '/m/015qff'},
|
403 |
+
{'id': 397, 'name': 'Cocktail', 'freebase_id': '/m/024g6'},
|
404 |
+
{'id': 398, 'name': 'Plastic bag', 'freebase_id': '/m/05gqfk'},
|
405 |
+
{'id': 399, 'name': 'Squash', 'freebase_id': '/m/0dv77'},
|
406 |
+
{'id': 400, 'name': 'Mushroom', 'freebase_id': '/m/052sf'},
|
407 |
+
{'id': 401, 'name': 'Hamburger', 'freebase_id': '/m/0cdn1'},
|
408 |
+
{'id': 402, 'name': 'Light switch', 'freebase_id': '/m/03jbxj'},
|
409 |
+
{'id': 403, 'name': 'Parachute', 'freebase_id': '/m/0cyfs'},
|
410 |
+
{'id': 404, 'name': 'Teddy bear', 'freebase_id': '/m/0kmg4'},
|
411 |
+
{'id': 405, 'name': 'Winter melon', 'freebase_id': '/m/02cvgx'},
|
412 |
+
{'id': 406, 'name': 'Deer', 'freebase_id': '/m/09kx5'},
|
413 |
+
{'id': 407, 'name': 'Musical keyboard', 'freebase_id': '/m/057cc'},
|
414 |
+
{'id': 408, 'name': 'Plumbing fixture', 'freebase_id': '/m/02pkr5'},
|
415 |
+
{'id': 409, 'name': 'Scoreboard', 'freebase_id': '/m/057p5t'},
|
416 |
+
{'id': 410, 'name': 'Baseball bat', 'freebase_id': '/m/03g8mr'},
|
417 |
+
{'id': 411, 'name': 'Envelope', 'freebase_id': '/m/0frqm'},
|
418 |
+
{'id': 412, 'name': 'Adhesive tape', 'freebase_id': '/m/03m3vtv'},
|
419 |
+
{'id': 413, 'name': 'Briefcase', 'freebase_id': '/m/0584n8'},
|
420 |
+
{'id': 414, 'name': 'Paddle', 'freebase_id': '/m/014y4n'},
|
421 |
+
{'id': 415, 'name': 'Bow and arrow', 'freebase_id': '/m/01g3x7'},
|
422 |
+
{'id': 416, 'name': 'Telephone', 'freebase_id': '/m/07cx4'},
|
423 |
+
{'id': 417, 'name': 'Sheep', 'freebase_id': '/m/07bgp'},
|
424 |
+
{'id': 418, 'name': 'Jacket', 'freebase_id': '/m/032b3c'},
|
425 |
+
{'id': 419, 'name': 'Boy', 'freebase_id': '/m/01bl7v'},
|
426 |
+
{'id': 420, 'name': 'Pizza', 'freebase_id': '/m/0663v'},
|
427 |
+
{'id': 421, 'name': 'Otter', 'freebase_id': '/m/0cn6p'},
|
428 |
+
{'id': 422, 'name': 'Office supplies', 'freebase_id': '/m/02rdsp'},
|
429 |
+
{'id': 423, 'name': 'Couch', 'freebase_id': '/m/02crq1'},
|
430 |
+
{'id': 424, 'name': 'Cello', 'freebase_id': '/m/01xqw'},
|
431 |
+
{'id': 425, 'name': 'Bull', 'freebase_id': '/m/0cnyhnx'},
|
432 |
+
{'id': 426, 'name': 'Camel', 'freebase_id': '/m/01x_v'},
|
433 |
+
{'id': 427, 'name': 'Ball', 'freebase_id': '/m/018xm'},
|
434 |
+
{'id': 428, 'name': 'Duck', 'freebase_id': '/m/09ddx'},
|
435 |
+
{'id': 429, 'name': 'Whale', 'freebase_id': '/m/084zz'},
|
436 |
+
{'id': 430, 'name': 'Shirt', 'freebase_id': '/m/01n4qj'},
|
437 |
+
{'id': 431, 'name': 'Tank', 'freebase_id': '/m/07cmd'},
|
438 |
+
{'id': 432, 'name': 'Motorcycle', 'freebase_id': '/m/04_sv'},
|
439 |
+
{'id': 433, 'name': 'Accordion', 'freebase_id': '/m/0mkg'},
|
440 |
+
{'id': 434, 'name': 'Owl', 'freebase_id': '/m/09d5_'},
|
441 |
+
{'id': 435, 'name': 'Porcupine', 'freebase_id': '/m/0c568'},
|
442 |
+
{'id': 436, 'name': 'Sun hat', 'freebase_id': '/m/02wbtzl'},
|
443 |
+
{'id': 437, 'name': 'Nail', 'freebase_id': '/m/05bm6'},
|
444 |
+
{'id': 438, 'name': 'Scissors', 'freebase_id': '/m/01lsmm'},
|
445 |
+
{'id': 439, 'name': 'Swan', 'freebase_id': '/m/0dftk'},
|
446 |
+
{'id': 440, 'name': 'Lamp', 'freebase_id': '/m/0dtln'},
|
447 |
+
{'id': 441, 'name': 'Crown', 'freebase_id': '/m/0nl46'},
|
448 |
+
{'id': 442, 'name': 'Piano', 'freebase_id': '/m/05r5c'},
|
449 |
+
{'id': 443, 'name': 'Sculpture', 'freebase_id': '/m/06msq'},
|
450 |
+
{'id': 444, 'name': 'Cheetah', 'freebase_id': '/m/0cd4d'},
|
451 |
+
{'id': 445, 'name': 'Oboe', 'freebase_id': '/m/05kms'},
|
452 |
+
{'id': 446, 'name': 'Tin can', 'freebase_id': '/m/02jnhm'},
|
453 |
+
{'id': 447, 'name': 'Mango', 'freebase_id': '/m/0fldg'},
|
454 |
+
{'id': 448, 'name': 'Tripod', 'freebase_id': '/m/073bxn'},
|
455 |
+
{'id': 449, 'name': 'Oven', 'freebase_id': '/m/029bxz'},
|
456 |
+
{'id': 450, 'name': 'Mouse', 'freebase_id': '/m/020lf'},
|
457 |
+
{'id': 451, 'name': 'Barge', 'freebase_id': '/m/01btn'},
|
458 |
+
{'id': 452, 'name': 'Coffee', 'freebase_id': '/m/02vqfm'},
|
459 |
+
{'id': 453, 'name': 'Snowboard', 'freebase_id': '/m/06__v'},
|
460 |
+
{'id': 454, 'name': 'Common fig', 'freebase_id': '/m/043nyj'},
|
461 |
+
{'id': 455, 'name': 'Salad', 'freebase_id': '/m/0grw1'},
|
462 |
+
{'id': 456, 'name': 'Marine invertebrates', 'freebase_id': '/m/03hl4l9'},
|
463 |
+
{'id': 457, 'name': 'Umbrella', 'freebase_id': '/m/0hnnb'},
|
464 |
+
{'id': 458, 'name': 'Kangaroo', 'freebase_id': '/m/04c0y'},
|
465 |
+
{'id': 459, 'name': 'Human arm', 'freebase_id': '/m/0dzf4'},
|
466 |
+
{'id': 460, 'name': 'Measuring cup', 'freebase_id': '/m/07v9_z'},
|
467 |
+
{'id': 461, 'name': 'Snail', 'freebase_id': '/m/0f9_l'},
|
468 |
+
{'id': 462, 'name': 'Loveseat', 'freebase_id': '/m/0703r8'},
|
469 |
+
{'id': 463, 'name': 'Suit', 'freebase_id': '/m/01xyhv'},
|
470 |
+
{'id': 464, 'name': 'Teapot', 'freebase_id': '/m/01fh4r'},
|
471 |
+
{'id': 465, 'name': 'Bottle', 'freebase_id': '/m/04dr76w'},
|
472 |
+
{'id': 466, 'name': 'Alpaca', 'freebase_id': '/m/0pcr'},
|
473 |
+
{'id': 467, 'name': 'Kettle', 'freebase_id': '/m/03s_tn'},
|
474 |
+
{'id': 468, 'name': 'Trousers', 'freebase_id': '/m/07mhn'},
|
475 |
+
{'id': 469, 'name': 'Popcorn', 'freebase_id': '/m/01hrv5'},
|
476 |
+
{'id': 470, 'name': 'Centipede', 'freebase_id': '/m/019h78'},
|
477 |
+
{'id': 471, 'name': 'Spider', 'freebase_id': '/m/09kmb'},
|
478 |
+
{'id': 472, 'name': 'Sparrow', 'freebase_id': '/m/0h23m'},
|
479 |
+
{'id': 473, 'name': 'Plate', 'freebase_id': '/m/050gv4'},
|
480 |
+
{'id': 474, 'name': 'Bagel', 'freebase_id': '/m/01fb_0'},
|
481 |
+
{'id': 475, 'name': 'Personal care', 'freebase_id': '/m/02w3_ws'},
|
482 |
+
{'id': 476, 'name': 'Apple', 'freebase_id': '/m/014j1m'},
|
483 |
+
{'id': 477, 'name': 'Brassiere', 'freebase_id': '/m/01gmv2'},
|
484 |
+
{'id': 478, 'name': 'Bathroom cabinet', 'freebase_id': '/m/04y4h8h'},
|
485 |
+
{'id': 479, 'name': 'studio couch', 'freebase_id': '/m/026qbn5'},
|
486 |
+
{'id': 480, 'name': 'Computer keyboard', 'freebase_id': '/m/01m2v'},
|
487 |
+
{'id': 481, 'name': 'Table tennis racket', 'freebase_id': '/m/05_5p_0'},
|
488 |
+
{'id': 482, 'name': 'Sushi', 'freebase_id': '/m/07030'},
|
489 |
+
{'id': 483, 'name': 'Cabinetry', 'freebase_id': '/m/01s105'},
|
490 |
+
{'id': 484, 'name': 'Street light', 'freebase_id': '/m/033rq4'},
|
491 |
+
{'id': 485, 'name': 'Towel', 'freebase_id': '/m/0162_1'},
|
492 |
+
{'id': 486, 'name': 'Nightstand', 'freebase_id': '/m/02z51p'},
|
493 |
+
{'id': 487, 'name': 'Rabbit', 'freebase_id': '/m/06mf6'},
|
494 |
+
{'id': 488, 'name': 'Dolphin', 'freebase_id': '/m/02hj4'},
|
495 |
+
{'id': 489, 'name': 'Dog', 'freebase_id': '/m/0bt9lr'},
|
496 |
+
{'id': 490, 'name': 'Jug', 'freebase_id': '/m/08hvt4'},
|
497 |
+
{'id': 491, 'name': 'Wok', 'freebase_id': '/m/084rd'},
|
498 |
+
{'id': 492, 'name': 'Fire hydrant', 'freebase_id': '/m/01pns0'},
|
499 |
+
{'id': 493, 'name': 'Human eye', 'freebase_id': '/m/014sv8'},
|
500 |
+
{'id': 494, 'name': 'Skyscraper', 'freebase_id': '/m/079cl'},
|
501 |
+
{'id': 495, 'name': 'Backpack', 'freebase_id': '/m/01940j'},
|
502 |
+
{'id': 496, 'name': 'Potato', 'freebase_id': '/m/05vtc'},
|
503 |
+
{'id': 497, 'name': 'Paper towel', 'freebase_id': '/m/02w3r3'},
|
504 |
+
{'id': 498, 'name': 'Lifejacket', 'freebase_id': '/m/054xkw'},
|
505 |
+
{'id': 499, 'name': 'Bicycle wheel', 'freebase_id': '/m/01bqk0'},
|
506 |
+
{'id': 500, 'name': 'Toilet', 'freebase_id': '/m/09g1w'},
|
507 |
+
]
|
508 |
+
|
509 |
+
|
510 |
+
def _get_builtin_metadata(cats):
|
511 |
+
id_to_name = {x['id']: x['name'] for x in cats}
|
512 |
+
thing_dataset_id_to_contiguous_id = {i + 1: i for i in range(len(cats))}
|
513 |
+
thing_classes = [x['name'] for x in sorted(cats, key=lambda x: x['id'])]
|
514 |
+
return {
|
515 |
+
"thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
|
516 |
+
"thing_classes": thing_classes}
|
517 |
+
|
518 |
+
_PREDEFINED_SPLITS_OID = {
|
519 |
+
# cat threshold: 500, 1500: r 170, c 151, f 179
|
520 |
+
"oid_train": ("oid/images/", "oid/annotations/oid_challenge_2019_train_bbox.json"),
|
521 |
+
# "expanded" duplicates annotations to their father classes based on the official
|
522 |
+
# hierarchy. This is used in the official evaulation protocol.
|
523 |
+
# https://storage.googleapis.com/openimages/web/evaluation.html
|
524 |
+
"oid_val_expanded": ("oid/images/validation/", "oid/annotations/oid_challenge_2019_val_expanded.json"),
|
525 |
+
"oid_val_expanded_rare": ("oid/images/validation/", "oid/annotations/oid_challenge_2019_val_expanded_rare.json"),
|
526 |
+
}
|
527 |
+
|
528 |
+
|
529 |
+
for key, (image_root, json_file) in _PREDEFINED_SPLITS_OID.items():
|
530 |
+
register_oid_instances(
|
531 |
+
key,
|
532 |
+
_get_builtin_metadata(categories),
|
533 |
+
os.path.join("datasets", json_file) if "://" not in json_file else json_file,
|
534 |
+
os.path.join("datasets", image_root),
|
535 |
+
)
|
detic/data/datasets/register_oid.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Xingyi Zhou from https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/coco.py
|
3 |
+
import copy
|
4 |
+
import io
|
5 |
+
import logging
|
6 |
+
import contextlib
|
7 |
+
import os
|
8 |
+
import datetime
|
9 |
+
import json
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
from fvcore.common.timer import Timer
|
15 |
+
from fvcore.common.file_io import PathManager, file_lock
|
16 |
+
from detectron2.structures import BoxMode, PolygonMasks, Boxes
|
17 |
+
from detectron2.data import DatasetCatalog, MetadataCatalog
|
18 |
+
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
"""
|
22 |
+
This file contains functions to register a COCO-format dataset to the DatasetCatalog.
|
23 |
+
"""
|
24 |
+
|
25 |
+
__all__ = ["register_coco_instances", "register_coco_panoptic_separated"]
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
def register_oid_instances(name, metadata, json_file, image_root):
|
30 |
+
"""
|
31 |
+
"""
|
32 |
+
# 1. register a function which returns dicts
|
33 |
+
DatasetCatalog.register(name, lambda: load_coco_json_mem_efficient(
|
34 |
+
json_file, image_root, name))
|
35 |
+
|
36 |
+
# 2. Optionally, add metadata about this dataset,
|
37 |
+
# since they might be useful in evaluation, visualization or logging
|
38 |
+
MetadataCatalog.get(name).set(
|
39 |
+
json_file=json_file, image_root=image_root, evaluator_type="oid", **metadata
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
def load_coco_json_mem_efficient(json_file, image_root, dataset_name=None, extra_annotation_keys=None):
|
44 |
+
"""
|
45 |
+
Actually not mem efficient
|
46 |
+
"""
|
47 |
+
from pycocotools.coco import COCO
|
48 |
+
|
49 |
+
timer = Timer()
|
50 |
+
json_file = PathManager.get_local_path(json_file)
|
51 |
+
with contextlib.redirect_stdout(io.StringIO()):
|
52 |
+
coco_api = COCO(json_file)
|
53 |
+
if timer.seconds() > 1:
|
54 |
+
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
|
55 |
+
|
56 |
+
id_map = None
|
57 |
+
if dataset_name is not None:
|
58 |
+
meta = MetadataCatalog.get(dataset_name)
|
59 |
+
cat_ids = sorted(coco_api.getCatIds())
|
60 |
+
cats = coco_api.loadCats(cat_ids)
|
61 |
+
# The categories in a custom json file may not be sorted.
|
62 |
+
thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])]
|
63 |
+
meta.thing_classes = thing_classes
|
64 |
+
|
65 |
+
if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)):
|
66 |
+
if "coco" not in dataset_name:
|
67 |
+
logger.warning(
|
68 |
+
"""
|
69 |
+
Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.
|
70 |
+
"""
|
71 |
+
)
|
72 |
+
id_map = {v: i for i, v in enumerate(cat_ids)}
|
73 |
+
meta.thing_dataset_id_to_contiguous_id = id_map
|
74 |
+
|
75 |
+
# sort indices for reproducible results
|
76 |
+
img_ids = sorted(coco_api.imgs.keys())
|
77 |
+
imgs = coco_api.loadImgs(img_ids)
|
78 |
+
logger.info("Loaded {} images in COCO format from {}".format(len(imgs), json_file))
|
79 |
+
|
80 |
+
dataset_dicts = []
|
81 |
+
|
82 |
+
ann_keys = ["iscrowd", "bbox", "category_id"] + (extra_annotation_keys or [])
|
83 |
+
|
84 |
+
for img_dict in imgs:
|
85 |
+
record = {}
|
86 |
+
record["file_name"] = os.path.join(image_root, img_dict["file_name"])
|
87 |
+
record["height"] = img_dict["height"]
|
88 |
+
record["width"] = img_dict["width"]
|
89 |
+
image_id = record["image_id"] = img_dict["id"]
|
90 |
+
anno_dict_list = coco_api.imgToAnns[image_id]
|
91 |
+
if 'neg_category_ids' in img_dict:
|
92 |
+
record['neg_category_ids'] = \
|
93 |
+
[id_map[x] for x in img_dict['neg_category_ids']]
|
94 |
+
|
95 |
+
objs = []
|
96 |
+
for anno in anno_dict_list:
|
97 |
+
assert anno["image_id"] == image_id
|
98 |
+
|
99 |
+
assert anno.get("ignore", 0) == 0
|
100 |
+
|
101 |
+
obj = {key: anno[key] for key in ann_keys if key in anno}
|
102 |
+
|
103 |
+
segm = anno.get("segmentation", None)
|
104 |
+
if segm: # either list[list[float]] or dict(RLE)
|
105 |
+
if not isinstance(segm, dict):
|
106 |
+
# filter out invalid polygons (< 3 points)
|
107 |
+
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
|
108 |
+
if len(segm) == 0:
|
109 |
+
num_instances_without_valid_segmentation += 1
|
110 |
+
continue # ignore this instance
|
111 |
+
obj["segmentation"] = segm
|
112 |
+
|
113 |
+
obj["bbox_mode"] = BoxMode.XYWH_ABS
|
114 |
+
|
115 |
+
if id_map:
|
116 |
+
obj["category_id"] = id_map[obj["category_id"]]
|
117 |
+
objs.append(obj)
|
118 |
+
record["annotations"] = objs
|
119 |
+
dataset_dicts.append(record)
|
120 |
+
|
121 |
+
del coco_api
|
122 |
+
return dataset_dicts
|
detic/data/tar_dataset.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
import os
|
4 |
+
import gzip
|
5 |
+
import numpy as np
|
6 |
+
import io
|
7 |
+
from PIL import Image
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
|
10 |
+
try:
|
11 |
+
from PIL import UnidentifiedImageError
|
12 |
+
|
13 |
+
unidentified_error_available = True
|
14 |
+
except ImportError:
|
15 |
+
# UnidentifiedImageError isn't available in older versions of PIL
|
16 |
+
unidentified_error_available = False
|
17 |
+
|
18 |
+
class DiskTarDataset(Dataset):
|
19 |
+
def __init__(self,
|
20 |
+
tarfile_path='dataset/imagenet/ImageNet-21k/metadata/tar_files.npy',
|
21 |
+
tar_index_dir='dataset/imagenet/ImageNet-21k/metadata/tarindex_npy',
|
22 |
+
preload=False,
|
23 |
+
num_synsets="all"):
|
24 |
+
"""
|
25 |
+
- preload (bool): Recommend to set preload to False when using
|
26 |
+
- num_synsets (integer or string "all"): set to small number for debugging
|
27 |
+
will load subset of dataset
|
28 |
+
"""
|
29 |
+
tar_files = np.load(tarfile_path)
|
30 |
+
|
31 |
+
chunk_datasets = []
|
32 |
+
dataset_lens = []
|
33 |
+
if isinstance(num_synsets, int):
|
34 |
+
assert num_synsets < len(tar_files)
|
35 |
+
tar_files = tar_files[:num_synsets]
|
36 |
+
for tar_file in tar_files:
|
37 |
+
dataset = _TarDataset(tar_file, tar_index_dir, preload=preload)
|
38 |
+
chunk_datasets.append(dataset)
|
39 |
+
dataset_lens.append(len(dataset))
|
40 |
+
|
41 |
+
self.chunk_datasets = chunk_datasets
|
42 |
+
self.dataset_lens = np.array(dataset_lens).astype(np.int32)
|
43 |
+
self.dataset_cumsums = np.cumsum(self.dataset_lens)
|
44 |
+
self.num_samples = sum(self.dataset_lens)
|
45 |
+
labels = np.zeros(self.dataset_lens.sum(), dtype=np.int64)
|
46 |
+
sI = 0
|
47 |
+
for k in range(len(self.dataset_lens)):
|
48 |
+
assert (sI+self.dataset_lens[k]) <= len(labels), f"{k} {sI+self.dataset_lens[k]} vs. {len(labels)}"
|
49 |
+
labels[sI:(sI+self.dataset_lens[k])] = k
|
50 |
+
sI += self.dataset_lens[k]
|
51 |
+
self.labels = labels
|
52 |
+
|
53 |
+
def __len__(self):
|
54 |
+
return self.num_samples
|
55 |
+
|
56 |
+
def __getitem__(self, index):
|
57 |
+
assert index >= 0 and index < len(self)
|
58 |
+
# find the dataset file we need to go to
|
59 |
+
d_index = np.searchsorted(self.dataset_cumsums, index)
|
60 |
+
|
61 |
+
# edge case, if index is at edge of chunks, move right
|
62 |
+
if index in self.dataset_cumsums:
|
63 |
+
d_index += 1
|
64 |
+
|
65 |
+
assert d_index == self.labels[index], f"{d_index} vs. {self.labels[index]} mismatch for {index}"
|
66 |
+
|
67 |
+
# change index to local dataset index
|
68 |
+
if d_index == 0:
|
69 |
+
local_index = index
|
70 |
+
else:
|
71 |
+
local_index = index - self.dataset_cumsums[d_index - 1]
|
72 |
+
data_bytes = self.chunk_datasets[d_index][local_index]
|
73 |
+
exception_to_catch = UnidentifiedImageError if unidentified_error_available else Exception
|
74 |
+
try:
|
75 |
+
image = Image.open(data_bytes).convert("RGB")
|
76 |
+
except exception_to_catch:
|
77 |
+
image = Image.fromarray(np.ones((224,224,3), dtype=np.uint8)*128)
|
78 |
+
d_index = -1
|
79 |
+
|
80 |
+
# label is the dataset (synset) we indexed into
|
81 |
+
return image, d_index, index
|
82 |
+
|
83 |
+
def __repr__(self):
|
84 |
+
st = f"DiskTarDataset(subdatasets={len(self.dataset_lens)},samples={self.num_samples})"
|
85 |
+
return st
|
86 |
+
|
87 |
+
class _TarDataset(object):
|
88 |
+
|
89 |
+
def __init__(self, filename, npy_index_dir, preload=False):
|
90 |
+
# translated from
|
91 |
+
# fbcode/experimental/deeplearning/matthijs/comp_descs/tardataset.lua
|
92 |
+
self.filename = filename
|
93 |
+
self.names = []
|
94 |
+
self.offsets = []
|
95 |
+
self.npy_index_dir = npy_index_dir
|
96 |
+
names, offsets = self.load_index()
|
97 |
+
|
98 |
+
self.num_samples = len(names)
|
99 |
+
if preload:
|
100 |
+
self.data = np.memmap(filename, mode='r', dtype='uint8')
|
101 |
+
self.offsets = offsets
|
102 |
+
else:
|
103 |
+
self.data = None
|
104 |
+
|
105 |
+
|
106 |
+
def __len__(self):
|
107 |
+
return self.num_samples
|
108 |
+
|
109 |
+
def load_index(self):
|
110 |
+
basename = os.path.basename(self.filename)
|
111 |
+
basename = os.path.splitext(basename)[0]
|
112 |
+
names = np.load(os.path.join(self.npy_index_dir, f"{basename}_names.npy"))
|
113 |
+
offsets = np.load(os.path.join(self.npy_index_dir, f"{basename}_offsets.npy"))
|
114 |
+
return names, offsets
|
115 |
+
|
116 |
+
def __getitem__(self, idx):
|
117 |
+
if self.data is None:
|
118 |
+
self.data = np.memmap(self.filename, mode='r', dtype='uint8')
|
119 |
+
_, self.offsets = self.load_index()
|
120 |
+
|
121 |
+
ofs = self.offsets[idx] * 512
|
122 |
+
fsize = 512 * (self.offsets[idx + 1] - self.offsets[idx])
|
123 |
+
data = self.data[ofs:ofs + fsize]
|
124 |
+
|
125 |
+
if data[:13].tostring() == '././@LongLink':
|
126 |
+
data = data[3 * 512:]
|
127 |
+
else:
|
128 |
+
data = data[512:]
|
129 |
+
|
130 |
+
# just to make it more fun a few JPEGs are GZIP compressed...
|
131 |
+
# catch this case
|
132 |
+
if tuple(data[:2]) == (0x1f, 0x8b):
|
133 |
+
s = io.BytesIO(data.tostring())
|
134 |
+
g = gzip.GzipFile(None, 'r', 0, s)
|
135 |
+
sdata = g.read()
|
136 |
+
else:
|
137 |
+
sdata = data.tostring()
|
138 |
+
return io.BytesIO(sdata)
|
detic/data/transforms/custom_augmentation_impl.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
3 |
+
# Part of the code is from https://github.com/rwightman/efficientdet-pytorch/blob/master/effdet/data/transforms.py
|
4 |
+
# Modified by Xingyi Zhou
|
5 |
+
# The original code is under Apache-2.0 License
|
6 |
+
import numpy as np
|
7 |
+
import sys
|
8 |
+
from fvcore.transforms.transform import (
|
9 |
+
BlendTransform,
|
10 |
+
CropTransform,
|
11 |
+
HFlipTransform,
|
12 |
+
NoOpTransform,
|
13 |
+
Transform,
|
14 |
+
VFlipTransform,
|
15 |
+
)
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
from detectron2.data.transforms.augmentation import Augmentation
|
19 |
+
from .custom_transform import EfficientDetResizeCropTransform
|
20 |
+
|
21 |
+
__all__ = [
|
22 |
+
"EfficientDetResizeCrop",
|
23 |
+
]
|
24 |
+
|
25 |
+
class EfficientDetResizeCrop(Augmentation):
|
26 |
+
"""
|
27 |
+
Scale the shorter edge to the given size, with a limit of `max_size` on the longer edge.
|
28 |
+
If `max_size` is reached, then downscale so that the longer edge does not exceed max_size.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self, size, scale, interp=Image.BILINEAR
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
"""
|
36 |
+
super().__init__()
|
37 |
+
self.target_size = (size, size)
|
38 |
+
self.scale = scale
|
39 |
+
self.interp = interp
|
40 |
+
|
41 |
+
def get_transform(self, img):
|
42 |
+
# Select a random scale factor.
|
43 |
+
scale_factor = np.random.uniform(*self.scale)
|
44 |
+
scaled_target_height = scale_factor * self.target_size[0]
|
45 |
+
scaled_target_width = scale_factor * self.target_size[1]
|
46 |
+
# Recompute the accurate scale_factor using rounded scaled image size.
|
47 |
+
width, height = img.shape[1], img.shape[0]
|
48 |
+
img_scale_y = scaled_target_height / height
|
49 |
+
img_scale_x = scaled_target_width / width
|
50 |
+
img_scale = min(img_scale_y, img_scale_x)
|
51 |
+
|
52 |
+
# Select non-zero random offset (x, y) if scaled image is larger than target size
|
53 |
+
scaled_h = int(height * img_scale)
|
54 |
+
scaled_w = int(width * img_scale)
|
55 |
+
offset_y = scaled_h - self.target_size[0]
|
56 |
+
offset_x = scaled_w - self.target_size[1]
|
57 |
+
offset_y = int(max(0.0, float(offset_y)) * np.random.uniform(0, 1))
|
58 |
+
offset_x = int(max(0.0, float(offset_x)) * np.random.uniform(0, 1))
|
59 |
+
return EfficientDetResizeCropTransform(
|
60 |
+
scaled_h, scaled_w, offset_y, offset_x, img_scale, self.target_size, self.interp)
|
detic/data/transforms/custom_transform.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
3 |
+
# Part of the code is from https://github.com/rwightman/efficientdet-pytorch/blob/master/effdet/data/transforms.py
|
4 |
+
# Modified by Xingyi Zhou
|
5 |
+
# The original code is under Apache-2.0 License
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from fvcore.transforms.transform import (
|
10 |
+
CropTransform,
|
11 |
+
HFlipTransform,
|
12 |
+
NoOpTransform,
|
13 |
+
Transform,
|
14 |
+
TransformList,
|
15 |
+
)
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
try:
|
19 |
+
import cv2 # noqa
|
20 |
+
except ImportError:
|
21 |
+
# OpenCV is an optional dependency at the moment
|
22 |
+
pass
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
"EfficientDetResizeCropTransform",
|
26 |
+
]
|
27 |
+
|
28 |
+
class EfficientDetResizeCropTransform(Transform):
|
29 |
+
"""
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, scaled_h, scaled_w, offset_y, offset_x, img_scale, \
|
33 |
+
target_size, interp=None):
|
34 |
+
"""
|
35 |
+
Args:
|
36 |
+
h, w (int): original image size
|
37 |
+
new_h, new_w (int): new image size
|
38 |
+
interp: PIL interpolation methods, defaults to bilinear.
|
39 |
+
"""
|
40 |
+
# TODO decide on PIL vs opencv
|
41 |
+
super().__init__()
|
42 |
+
if interp is None:
|
43 |
+
interp = Image.BILINEAR
|
44 |
+
self._set_attributes(locals())
|
45 |
+
|
46 |
+
def apply_image(self, img, interp=None):
|
47 |
+
assert len(img.shape) <= 4
|
48 |
+
|
49 |
+
if img.dtype == np.uint8:
|
50 |
+
pil_image = Image.fromarray(img)
|
51 |
+
interp_method = interp if interp is not None else self.interp
|
52 |
+
pil_image = pil_image.resize((self.scaled_w, self.scaled_h), interp_method)
|
53 |
+
ret = np.asarray(pil_image)
|
54 |
+
right = min(self.scaled_w, self.offset_x + self.target_size[1])
|
55 |
+
lower = min(self.scaled_h, self.offset_y + self.target_size[0])
|
56 |
+
if len(ret.shape) <= 3:
|
57 |
+
ret = ret[self.offset_y: lower, self.offset_x: right]
|
58 |
+
else:
|
59 |
+
ret = ret[..., self.offset_y: lower, self.offset_x: right, :]
|
60 |
+
else:
|
61 |
+
# PIL only supports uint8
|
62 |
+
img = torch.from_numpy(img)
|
63 |
+
shape = list(img.shape)
|
64 |
+
shape_4d = shape[:2] + [1] * (4 - len(shape)) + shape[2:]
|
65 |
+
img = img.view(shape_4d).permute(2, 3, 0, 1) # hw(c) -> nchw
|
66 |
+
_PIL_RESIZE_TO_INTERPOLATE_MODE = {Image.BILINEAR: "bilinear", Image.BICUBIC: "bicubic"}
|
67 |
+
mode = _PIL_RESIZE_TO_INTERPOLATE_MODE[self.interp]
|
68 |
+
img = F.interpolate(img, (self.scaled_h, self.scaled_w), mode=mode, align_corners=False)
|
69 |
+
shape[:2] = (self.scaled_h, self.scaled_w)
|
70 |
+
ret = img.permute(2, 3, 0, 1).view(shape).numpy() # nchw -> hw(c)
|
71 |
+
right = min(self.scaled_w, self.offset_x + self.target_size[1])
|
72 |
+
lower = min(self.scaled_h, self.offset_y + self.target_size[0])
|
73 |
+
if len(ret.shape) <= 3:
|
74 |
+
ret = ret[self.offset_y: lower, self.offset_x: right]
|
75 |
+
else:
|
76 |
+
ret = ret[..., self.offset_y: lower, self.offset_x: right, :]
|
77 |
+
return ret
|
78 |
+
|
79 |
+
|
80 |
+
def apply_coords(self, coords):
|
81 |
+
coords[:, 0] = coords[:, 0] * self.img_scale
|
82 |
+
coords[:, 1] = coords[:, 1] * self.img_scale
|
83 |
+
coords[:, 0] -= self.offset_x
|
84 |
+
coords[:, 1] -= self.offset_y
|
85 |
+
return coords
|
86 |
+
|
87 |
+
|
88 |
+
def apply_segmentation(self, segmentation):
|
89 |
+
segmentation = self.apply_image(segmentation, interp=Image.NEAREST)
|
90 |
+
return segmentation
|
91 |
+
|
92 |
+
|
93 |
+
def inverse(self):
|
94 |
+
raise NotImplementedError
|
95 |
+
|
96 |
+
|
97 |
+
def inverse_apply_coords(self, coords):
|
98 |
+
coords[:, 0] += self.offset_x
|
99 |
+
coords[:, 1] += self.offset_y
|
100 |
+
coords[:, 0] = coords[:, 0] / self.img_scale
|
101 |
+
coords[:, 1] = coords[:, 1] / self.img_scale
|
102 |
+
return coords
|
103 |
+
|
104 |
+
|
105 |
+
def inverse_apply_box(self, box: np.ndarray) -> np.ndarray:
|
106 |
+
"""
|
107 |
+
"""
|
108 |
+
idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
|
109 |
+
coords = np.asarray(box).reshape(-1, 4)[:, idxs].reshape(-1, 2)
|
110 |
+
coords = self.inverse_apply_coords(coords).reshape((-1, 4, 2))
|
111 |
+
minxy = coords.min(axis=1)
|
112 |
+
maxxy = coords.max(axis=1)
|
113 |
+
trans_boxes = np.concatenate((minxy, maxxy), axis=1)
|
114 |
+
return trans_boxes
|