Ahsen Khaliq commited on
Commit
9c1631e
1 Parent(s): 49e8d07

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +93 -0
app.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
3
+ import gradio as gr
4
+
5
+ # Install detectron2
6
+ import torch
7
+
8
+ # clone and install Detic
9
+ os.system("git clone https://github.com/facebookresearch/Detic.git --recurse-submodules")
10
+ os.chdir("Detic")
11
+ os.system("pip install -r requirements.txt")
12
+
13
+ # Some basic setup:
14
+ # Setup detectron2 logger
15
+ import detectron2
16
+ from detectron2.utils.logger import setup_logger
17
+ setup_logger()
18
+
19
+ # import some common libraries
20
+ import sys
21
+ import numpy as np
22
+ import os, json, cv2, random
23
+ from google.colab.patches import cv2_imshow
24
+
25
+ # import some common detectron2 utilities
26
+ from detectron2 import model_zoo
27
+ from detectron2.engine import DefaultPredictor
28
+ from detectron2.config import get_cfg
29
+ from detectron2.utils.visualizer import Visualizer
30
+ from detectron2.data import MetadataCatalog, DatasetCatalog
31
+
32
+ # Detic libraries
33
+ sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/')
34
+ from centernet.config import add_centernet_config
35
+ from detic.config import add_detic_config
36
+ from detic.modeling.utils import reset_cls_test
37
+
38
+ # Build the detector and download our pretrained weights
39
+ cfg = get_cfg()
40
+ add_centernet_config(cfg)
41
+ add_detic_config(cfg)
42
+ cfg.MODEL.DEVICE='cpu'
43
+ cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml")
44
+ cfg.MODEL.WEIGHTS = 'https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth'
45
+ cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
46
+ cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = 'rand'
47
+ cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = True # For better visualization purpose. Set to False for all classes.
48
+ predictor = DefaultPredictor(cfg)
49
+
50
+ # Setup the model's vocabulary using build-in datasets
51
+
52
+ BUILDIN_CLASSIFIER = {
53
+ 'lvis': 'datasets/metadata/lvis_v1_clip_a+cname.npy',
54
+ 'objects365': 'datasets/metadata/o365_clip_a+cnamefix.npy',
55
+ 'openimages': 'datasets/metadata/oid_clip_a+cname.npy',
56
+ 'coco': 'datasets/metadata/coco_clip_a+cname.npy',
57
+ }
58
+
59
+ BUILDIN_METADATA_PATH = {
60
+ 'lvis': 'lvis_v1_val',
61
+ 'objects365': 'objects365_v2_val',
62
+ 'openimages': 'oid_val_expanded',
63
+ 'coco': 'coco_2017_val',
64
+ }
65
+
66
+ vocabulary = 'lvis' # change to 'lvis', 'objects365', 'openimages', or 'coco'
67
+ metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary])
68
+ classifier = BUILDIN_CLASSIFIER[vocabulary]
69
+ num_classes = len(metadata.thing_classes)
70
+ reset_cls_test(predictor.model, classifier, num_classes)
71
+
72
+ os.system("wget https://web.eecs.umich.edu/~fouhey/fun/desk/desk.jpg")
73
+
74
+ def inference(img):
75
+
76
+ im = cv2.imread(img)
77
+
78
+ outputs = predictor(im)
79
+ v = Visualizer(im[:, :, ::-1], metadata)
80
+ out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
81
+ cv2_imshow(out.get_image()[:, :, ::-1])
82
+
83
+ return Image.fromarray(np.uint8(out.get_image())).convert('RGB')
84
+
85
+ title = "Detectron 2"
86
+ description = "Gradio demo for Detectron 2: A PyTorch-based modular object detection library. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
87
+ article = "<p style='text-align: center'><a href='https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/' target='_blank'>Detectron2: A PyTorch-based modular object detection library</a> | <a href='https://github.com/facebookresearch/detectron2' target='_blank'>Github Repo</a></p>"
88
+
89
+ examples = [['desk.jpg']]
90
+ gr.Interface(inference, inputs=gr.inputs.Image(type="filepath"), outputs=gr.outputs.Image(type="pil"),enable_queue=True, title=title,
91
+ description=description,
92
+ article=article,
93
+ examples=examples).launch()