|
import mediapipe as mp |
|
import gradio as gr |
|
import cv2 |
|
import torch |
|
|
|
|
|
|
|
torch.hub.download_url_to_file('https://artbreeder.b-cdn.net/imgs/c789e54661bfb432c5522a36553f.jpeg', 'face1.jpg') |
|
torch.hub.download_url_to_file('https://artbreeder.b-cdn.net/imgs/c86622e8cb58d490e35b01cb9996.jpeg', 'face2.jpg') |
|
|
|
mp_face_mesh = mp.solutions.face_mesh |
|
|
|
|
|
mp_drawing = mp.solutions.drawing_utils |
|
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1) |
|
|
|
|
|
|
|
def inference(image): |
|
with mp_face_mesh.FaceMesh( |
|
static_image_mode=True, |
|
max_num_faces=2, |
|
min_detection_confidence=0.5) as face_mesh: |
|
|
|
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) |
|
|
|
annotated_image = image.copy() |
|
for face_landmarks in results.multi_face_landmarks: |
|
mp_drawing.draw_landmarks( |
|
image=annotated_image, |
|
landmark_list=face_landmarks, |
|
connections=mp_face_mesh.FACEMESH_TESSELATION, |
|
landmark_drawing_spec=drawing_spec, |
|
connection_drawing_spec=drawing_spec) |
|
return annotated_image |
|
|
|
title = "Face Mesh" |
|
description = "Gradio demo for Face Mesh. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.06724'>Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs</a> | <a href='https://github.com/google/mediapipe'>Github Repo</a></p>" |
|
|
|
gr.Interface( |
|
inference, |
|
[gr.inputs.Image(label="Input")], |
|
gr.outputs.Image(type="pil", label="Output"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=[ |
|
["face1.jpg"], |
|
["face2.jpg"] |
|
]).launch() |