File size: 6,073 Bytes
16aee22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/sukjunhwang/IFC

import numpy as np
import logging
import sys
from fvcore.transforms.transform import (
    HFlipTransform,
    NoOpTransform,
    VFlipTransform,
)
from PIL import Image

from detectron2.data import transforms as T


class ResizeShortestEdge(T.Augmentation):
    """
    Scale the shorter edge to the given size, with a limit of `max_size` on the longer edge.
    If `max_size` is reached, then downscale so that the longer edge does not exceed max_size.
    """

    def __init__(
        self, short_edge_length, max_size=sys.maxsize, sample_style="range", interp=Image.BILINEAR, clip_frame_cnt=1
    ):
        """
        Args:
            short_edge_length (list[int]): If ``sample_style=="range"``,
                a [min, max] interval from which to sample the shortest edge length.
                If ``sample_style=="choice"``, a list of shortest edge lengths to sample from.
            max_size (int): maximum allowed longest edge length.
            sample_style (str): either "range" or "choice".
        """
        super().__init__()
        assert sample_style in ["range", "choice", "range_by_clip", "choice_by_clip"], sample_style

        self.is_range = ("range" in sample_style)
        if isinstance(short_edge_length, int):
            short_edge_length = (short_edge_length, short_edge_length)
        if self.is_range:
            assert len(short_edge_length) == 2, (
                "short_edge_length must be two values using 'range' sample style."
                f" Got {short_edge_length}!"
            )
        self._cnt = 0
        self._init(locals())

    def get_transform(self, image):
        if self._cnt % self.clip_frame_cnt == 0:
            if self.is_range:
                self.size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1)
            else:
                self.size = np.random.choice(self.short_edge_length)
            if self.size == 0:
                return NoOpTransform()

            self._cnt = 0   # avoiding overflow
        self._cnt += 1

        h, w = image.shape[:2]

        scale = self.size * 1.0 / min(h, w)
        if h < w:
            newh, neww = self.size, scale * w
        else:
            newh, neww = scale * h, self.size
        if max(newh, neww) > self.max_size:
            scale = self.max_size * 1.0 / max(newh, neww)
            newh = newh * scale
            neww = neww * scale
        neww = int(neww + 0.5)
        newh = int(newh + 0.5)
        return T.ResizeTransform(h, w, newh, neww, self.interp)


class RandomFlip(T.Augmentation):
    """
    Flip the image horizontally or vertically with the given probability.
    """

    def __init__(self, prob=0.5, *, horizontal=True, vertical=False, clip_frame_cnt=1):
        """
        Args:
            prob (float): probability of flip.
            horizontal (boolean): whether to apply horizontal flipping
            vertical (boolean): whether to apply vertical flipping
        """
        super().__init__()

        if horizontal and vertical:
            raise ValueError("Cannot do both horiz and vert. Please use two Flip instead.")
        if not horizontal and not vertical:
            raise ValueError("At least one of horiz or vert has to be True!")
        self._cnt = 0

        self._init(locals())

    def get_transform(self, image):
        if self._cnt % self.clip_frame_cnt == 0:
            self.do = self._rand_range() < self.prob
            self._cnt = 0   # avoiding overflow
        self._cnt += 1

        h, w = image.shape[:2]

        if self.do:
            if self.horizontal:
                return HFlipTransform(w)
            elif self.vertical:
                return VFlipTransform(h)
        else:
            return NoOpTransform()


def build_augmentation(cfg, is_train):
    logger = logging.getLogger(__name__)
    aug_list = []
    if is_train:
        # Crop
        if cfg.INPUT.CROP.ENABLED:
            aug_list.append(T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE))

        # Resize
        min_size = cfg.INPUT.MIN_SIZE_TRAIN
        max_size = cfg.INPUT.MAX_SIZE_TRAIN
        sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
        ms_clip_frame_cnt = cfg.INPUT.SAMPLING_FRAME_NUM if "by_clip" in cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING else 1
        aug_list.append(ResizeShortestEdge(min_size, max_size, sample_style, clip_frame_cnt=ms_clip_frame_cnt))

        # Flip
        if cfg.INPUT.RANDOM_FLIP != "none":
            if cfg.INPUT.RANDOM_FLIP == "flip_by_clip":
                flip_clip_frame_cnt = cfg.INPUT.SAMPLING_FRAME_NUM
            else:
                flip_clip_frame_cnt = 1

            aug_list.append(
                # NOTE using RandomFlip modified for the support of flip maintenance
                RandomFlip(
                    horizontal=(cfg.INPUT.RANDOM_FLIP == "horizontal") or (cfg.INPUT.RANDOM_FLIP == "flip_by_clip"),
                    vertical=cfg.INPUT.RANDOM_FLIP == "vertical",
                    clip_frame_cnt=flip_clip_frame_cnt,
                )
            )

        # Additional augmentations : brightness, contrast, saturation, rotation
        augmentations = cfg.INPUT.AUGMENTATIONS
        if "brightness" in augmentations:
            aug_list.append(T.RandomBrightness(0.9, 1.1))
        if "contrast" in augmentations:
            aug_list.append(T.RandomContrast(0.9, 1.1))
        if "saturation" in augmentations:
            aug_list.append(T.RandomSaturation(0.9, 1.1))
        if "rotation" in augmentations:
            aug_list.append(
                T.RandomRotation(
                    [-15, 15], expand=False, center=[(0.4, 0.4), (0.6, 0.6)], sample_style="range"
                )
            )
    else:
        # Resize
        min_size = cfg.INPUT.MIN_SIZE_TEST
        max_size = cfg.INPUT.MAX_SIZE_TEST
        sample_style = "choice"
        aug_list.append(T.ResizeShortestEdge(min_size, max_size, sample_style))

    return aug_list