File size: 5,719 Bytes
16aee22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detectron2/blob/main/tools/analyze_model.py

import logging
import numpy as np
from collections import Counter
import tqdm
from fvcore.nn import flop_count_table  # can also try flop_count_str

from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import CfgNode, LazyConfig, get_cfg, instantiate
from detectron2.data import build_detection_test_loader
from detectron2.engine import default_argument_parser
from detectron2.modeling import build_model
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.utils.analysis import (
    FlopCountAnalysis,
    activation_count_operators,
    parameter_count_table,
)
from detectron2.utils.logger import setup_logger

# fmt: off
import os
import sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))
# fmt: on

from mask2former import add_maskformer2_config

logger = logging.getLogger("detectron2")


def setup(args):
    if args.config_file.endswith(".yaml"):
        cfg = get_cfg()
        add_deeplab_config(cfg)
        add_maskformer2_config(cfg)
        cfg.merge_from_file(args.config_file)
        cfg.DATALOADER.NUM_WORKERS = 0
        cfg.merge_from_list(args.opts)
        cfg.freeze()
    else:
        cfg = LazyConfig.load(args.config_file)
        cfg = LazyConfig.apply_overrides(cfg, args.opts)
    setup_logger(name="fvcore")
    setup_logger()
    return cfg


def do_flop(cfg):
    if isinstance(cfg, CfgNode):
        data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
        model = build_model(cfg)
        DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)
    else:
        data_loader = instantiate(cfg.dataloader.test)
        model = instantiate(cfg.model)
        model.to(cfg.train.device)
        DetectionCheckpointer(model).load(cfg.train.init_checkpoint)
    model.eval()

    counts = Counter()
    total_flops = []
    for idx, data in zip(tqdm.trange(args.num_inputs), data_loader):  # noqa
        if args.use_fixed_input_size and isinstance(cfg, CfgNode):
            import torch
            crop_size = cfg.INPUT.CROP.SIZE[0]
            data[0]["image"] = torch.zeros((3, crop_size, crop_size))
        flops = FlopCountAnalysis(model, data)
        if idx > 0:
            flops.unsupported_ops_warnings(False).uncalled_modules_warnings(False)
        counts += flops.by_operator()
        total_flops.append(flops.total())

    logger.info("Flops table computed from only one input sample:\n" + flop_count_table(flops))
    logger.info(
        "Average GFlops for each type of operators:\n"
        + str([(k, v / (idx + 1) / 1e9) for k, v in counts.items()])
    )
    logger.info(
        "Total GFlops: {:.1f}±{:.1f}".format(np.mean(total_flops) / 1e9, np.std(total_flops) / 1e9)
    )


def do_activation(cfg):
    if isinstance(cfg, CfgNode):
        data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
        model = build_model(cfg)
        DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)
    else:
        data_loader = instantiate(cfg.dataloader.test)
        model = instantiate(cfg.model)
        model.to(cfg.train.device)
        DetectionCheckpointer(model).load(cfg.train.init_checkpoint)
    model.eval()

    counts = Counter()
    total_activations = []
    for idx, data in zip(tqdm.trange(args.num_inputs), data_loader):  # noqa
        count = activation_count_operators(model, data)
        counts += count
        total_activations.append(sum(count.values()))
    logger.info(
        "(Million) Activations for Each Type of Operators:\n"
        + str([(k, v / idx) for k, v in counts.items()])
    )
    logger.info(
        "Total (Million) Activations: {}±{}".format(
            np.mean(total_activations), np.std(total_activations)
        )
    )


def do_parameter(cfg):
    if isinstance(cfg, CfgNode):
        model = build_model(cfg)
    else:
        model = instantiate(cfg.model)
    logger.info("Parameter Count:\n" + parameter_count_table(model, max_depth=5))


def do_structure(cfg):
    if isinstance(cfg, CfgNode):
        model = build_model(cfg)
    else:
        model = instantiate(cfg.model)
    logger.info("Model Structure:\n" + str(model))


if __name__ == "__main__":
    parser = default_argument_parser(
        epilog="""
Examples:
To show parameters of a model:
$ ./analyze_model.py --tasks parameter \\
    --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
Flops and activations are data-dependent, therefore inputs and model weights
are needed to count them:
$ ./analyze_model.py --num-inputs 100 --tasks flop \\
    --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \\
    MODEL.WEIGHTS /path/to/model.pkl
"""
    )
    parser.add_argument(
        "--tasks",
        choices=["flop", "activation", "parameter", "structure"],
        required=True,
        nargs="+",
    )
    parser.add_argument(
        "-n",
        "--num-inputs",
        default=100,
        type=int,
        help="number of inputs used to compute statistics for flops/activations, "
        "both are data dependent.",
    )
    parser.add_argument(
        "--use-fixed-input-size",
        action="store_true",
        help="use fixed input size when calculating flops",
    )
    args = parser.parse_args()
    assert not args.eval_only
    assert args.num_gpus == 1

    cfg = setup(args)

    for task in args.tasks:
        {
            "flop": do_flop,
            "activation": do_activation,
            "parameter": do_parameter,
            "structure": do_structure,
        }[task](cfg)