Mask2Former / mask2former /evaluation /instance_evaluation.py
Ahsen Khaliq
add files
16aee22
raw
history blame
4.63 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import copy
import io
import itertools
import json
import logging
import numpy as np
import os
import pickle
from collections import OrderedDict
import pycocotools.mask as mask_util
import torch
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from tabulate import tabulate
import detectron2.utils.comm as comm
from detectron2.config import CfgNode
from detectron2.data import MetadataCatalog
from detectron2.data.datasets.coco import convert_to_coco_json
from detectron2.evaluation.coco_evaluation import COCOEvaluator, _evaluate_predictions_on_coco
from detectron2.evaluation.fast_eval_api import COCOeval_opt
from detectron2.structures import Boxes, BoxMode, pairwise_iou
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import create_small_table
# modified from COCOEvaluator for instance segmetnat
class InstanceSegEvaluator(COCOEvaluator):
"""
Evaluate AR for object proposals, AP for instance detection/segmentation, AP
for keypoint detection outputs using COCO's metrics.
See http://cocodataset.org/#detection-eval and
http://cocodataset.org/#keypoints-eval to understand its metrics.
The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means
the metric cannot be computed (e.g. due to no predictions made).
In addition to COCO, this evaluator is able to support any bounding box detection,
instance segmentation, or keypoint detection dataset.
"""
def _eval_predictions(self, predictions, img_ids=None):
"""
Evaluate predictions. Fill self._results with the metrics of the tasks.
"""
self._logger.info("Preparing results for COCO format ...")
coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
tasks = self._tasks or self._tasks_from_predictions(coco_results)
# unmap the category ids for COCO
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id
# all_contiguous_ids = list(dataset_id_to_contiguous_id.values())
# num_classes = len(all_contiguous_ids)
# assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1
reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()}
for result in coco_results:
category_id = result["category_id"]
# assert category_id < num_classes, (
# f"A prediction has class={category_id}, "
# f"but the dataset only has {num_classes} classes and "
# f"predicted class id should be in [0, {num_classes - 1}]."
# )
assert category_id in reverse_id_mapping, (
f"A prediction has class={category_id}, "
f"but the dataset only has class ids in {dataset_id_to_contiguous_id}."
)
result["category_id"] = reverse_id_mapping[category_id]
if self._output_dir:
file_path = os.path.join(self._output_dir, "coco_instances_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(coco_results))
f.flush()
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info(
"Evaluating predictions with {} COCO API...".format(
"unofficial" if self._use_fast_impl else "official"
)
)
for task in sorted(tasks):
assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!"
coco_eval = (
_evaluate_predictions_on_coco(
self._coco_api,
coco_results,
task,
kpt_oks_sigmas=self._kpt_oks_sigmas,
use_fast_impl=self._use_fast_impl,
img_ids=img_ids,
max_dets_per_image=self._max_dets_per_image,
)
if len(coco_results) > 0
else None # cocoapi does not handle empty results very well
)
res = self._derive_coco_results(
coco_eval, task, class_names=self._metadata.get("thing_classes")
)
self._results[task] = res