Ahsen Khaliq
add files
16aee22
raw
history blame
15.6 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/sukjunhwang/IFC
import contextlib
import io
import json
import logging
import numpy as np
import os
import pycocotools.mask as mask_util
from fvcore.common.file_io import PathManager
from fvcore.common.timer import Timer
from detectron2.structures import Boxes, BoxMode, PolygonMasks
from detectron2.data import DatasetCatalog, MetadataCatalog
"""
This file contains functions to parse YTVIS dataset of
COCO-format annotations into dicts in "Detectron2 format".
"""
logger = logging.getLogger(__name__)
__all__ = ["load_ytvis_json", "register_ytvis_instances"]
YTVIS_CATEGORIES_2019 = [
{"color": [220, 20, 60], "isthing": 1, "id": 1, "name": "person"},
{"color": [0, 82, 0], "isthing": 1, "id": 2, "name": "giant_panda"},
{"color": [119, 11, 32], "isthing": 1, "id": 3, "name": "lizard"},
{"color": [165, 42, 42], "isthing": 1, "id": 4, "name": "parrot"},
{"color": [134, 134, 103], "isthing": 1, "id": 5, "name": "skateboard"},
{"color": [0, 0, 142], "isthing": 1, "id": 6, "name": "sedan"},
{"color": [255, 109, 65], "isthing": 1, "id": 7, "name": "ape"},
{"color": [0, 226, 252], "isthing": 1, "id": 8, "name": "dog"},
{"color": [5, 121, 0], "isthing": 1, "id": 9, "name": "snake"},
{"color": [0, 60, 100], "isthing": 1, "id": 10, "name": "monkey"},
{"color": [250, 170, 30], "isthing": 1, "id": 11, "name": "hand"},
{"color": [100, 170, 30], "isthing": 1, "id": 12, "name": "rabbit"},
{"color": [179, 0, 194], "isthing": 1, "id": 13, "name": "duck"},
{"color": [255, 77, 255], "isthing": 1, "id": 14, "name": "cat"},
{"color": [120, 166, 157], "isthing": 1, "id": 15, "name": "cow"},
{"color": [73, 77, 174], "isthing": 1, "id": 16, "name": "fish"},
{"color": [0, 80, 100], "isthing": 1, "id": 17, "name": "train"},
{"color": [182, 182, 255], "isthing": 1, "id": 18, "name": "horse"},
{"color": [0, 143, 149], "isthing": 1, "id": 19, "name": "turtle"},
{"color": [174, 57, 255], "isthing": 1, "id": 20, "name": "bear"},
{"color": [0, 0, 230], "isthing": 1, "id": 21, "name": "motorbike"},
{"color": [72, 0, 118], "isthing": 1, "id": 22, "name": "giraffe"},
{"color": [255, 179, 240], "isthing": 1, "id": 23, "name": "leopard"},
{"color": [0, 125, 92], "isthing": 1, "id": 24, "name": "fox"},
{"color": [209, 0, 151], "isthing": 1, "id": 25, "name": "deer"},
{"color": [188, 208, 182], "isthing": 1, "id": 26, "name": "owl"},
{"color": [145, 148, 174], "isthing": 1, "id": 27, "name": "surfboard"},
{"color": [106, 0, 228], "isthing": 1, "id": 28, "name": "airplane"},
{"color": [0, 0, 70], "isthing": 1, "id": 29, "name": "truck"},
{"color": [199, 100, 0], "isthing": 1, "id": 30, "name": "zebra"},
{"color": [166, 196, 102], "isthing": 1, "id": 31, "name": "tiger"},
{"color": [110, 76, 0], "isthing": 1, "id": 32, "name": "elephant"},
{"color": [133, 129, 255], "isthing": 1, "id": 33, "name": "snowboard"},
{"color": [0, 0, 192], "isthing": 1, "id": 34, "name": "boat"},
{"color": [183, 130, 88], "isthing": 1, "id": 35, "name": "shark"},
{"color": [130, 114, 135], "isthing": 1, "id": 36, "name": "mouse"},
{"color": [107, 142, 35], "isthing": 1, "id": 37, "name": "frog"},
{"color": [0, 228, 0], "isthing": 1, "id": 38, "name": "eagle"},
{"color": [174, 255, 243], "isthing": 1, "id": 39, "name": "earless_seal"},
{"color": [255, 208, 186], "isthing": 1, "id": 40, "name": "tennis_racket"},
]
YTVIS_CATEGORIES_2021 = [
{"color": [106, 0, 228], "isthing": 1, "id": 1, "name": "airplane"},
{"color": [174, 57, 255], "isthing": 1, "id": 2, "name": "bear"},
{"color": [255, 109, 65], "isthing": 1, "id": 3, "name": "bird"},
{"color": [0, 0, 192], "isthing": 1, "id": 4, "name": "boat"},
{"color": [0, 0, 142], "isthing": 1, "id": 5, "name": "car"},
{"color": [255, 77, 255], "isthing": 1, "id": 6, "name": "cat"},
{"color": [120, 166, 157], "isthing": 1, "id": 7, "name": "cow"},
{"color": [209, 0, 151], "isthing": 1, "id": 8, "name": "deer"},
{"color": [0, 226, 252], "isthing": 1, "id": 9, "name": "dog"},
{"color": [179, 0, 194], "isthing": 1, "id": 10, "name": "duck"},
{"color": [174, 255, 243], "isthing": 1, "id": 11, "name": "earless_seal"},
{"color": [110, 76, 0], "isthing": 1, "id": 12, "name": "elephant"},
{"color": [73, 77, 174], "isthing": 1, "id": 13, "name": "fish"},
{"color": [250, 170, 30], "isthing": 1, "id": 14, "name": "flying_disc"},
{"color": [0, 125, 92], "isthing": 1, "id": 15, "name": "fox"},
{"color": [107, 142, 35], "isthing": 1, "id": 16, "name": "frog"},
{"color": [0, 82, 0], "isthing": 1, "id": 17, "name": "giant_panda"},
{"color": [72, 0, 118], "isthing": 1, "id": 18, "name": "giraffe"},
{"color": [182, 182, 255], "isthing": 1, "id": 19, "name": "horse"},
{"color": [255, 179, 240], "isthing": 1, "id": 20, "name": "leopard"},
{"color": [119, 11, 32], "isthing": 1, "id": 21, "name": "lizard"},
{"color": [0, 60, 100], "isthing": 1, "id": 22, "name": "monkey"},
{"color": [0, 0, 230], "isthing": 1, "id": 23, "name": "motorbike"},
{"color": [130, 114, 135], "isthing": 1, "id": 24, "name": "mouse"},
{"color": [165, 42, 42], "isthing": 1, "id": 25, "name": "parrot"},
{"color": [220, 20, 60], "isthing": 1, "id": 26, "name": "person"},
{"color": [100, 170, 30], "isthing": 1, "id": 27, "name": "rabbit"},
{"color": [183, 130, 88], "isthing": 1, "id": 28, "name": "shark"},
{"color": [134, 134, 103], "isthing": 1, "id": 29, "name": "skateboard"},
{"color": [5, 121, 0], "isthing": 1, "id": 30, "name": "snake"},
{"color": [133, 129, 255], "isthing": 1, "id": 31, "name": "snowboard"},
{"color": [188, 208, 182], "isthing": 1, "id": 32, "name": "squirrel"},
{"color": [145, 148, 174], "isthing": 1, "id": 33, "name": "surfboard"},
{"color": [255, 208, 186], "isthing": 1, "id": 34, "name": "tennis_racket"},
{"color": [166, 196, 102], "isthing": 1, "id": 35, "name": "tiger"},
{"color": [0, 80, 100], "isthing": 1, "id": 36, "name": "train"},
{"color": [0, 0, 70], "isthing": 1, "id": 37, "name": "truck"},
{"color": [0, 143, 149], "isthing": 1, "id": 38, "name": "turtle"},
{"color": [0, 228, 0], "isthing": 1, "id": 39, "name": "whale"},
{"color": [199, 100, 0], "isthing": 1, "id": 40, "name": "zebra"},
]
def _get_ytvis_2019_instances_meta():
thing_ids = [k["id"] for k in YTVIS_CATEGORIES_2019 if k["isthing"] == 1]
thing_colors = [k["color"] for k in YTVIS_CATEGORIES_2019 if k["isthing"] == 1]
assert len(thing_ids) == 40, len(thing_ids)
# Mapping from the incontiguous YTVIS category id to an id in [0, 39]
thing_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(thing_ids)}
thing_classes = [k["name"] for k in YTVIS_CATEGORIES_2019 if k["isthing"] == 1]
ret = {
"thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
"thing_classes": thing_classes,
"thing_colors": thing_colors,
}
return ret
def _get_ytvis_2021_instances_meta():
thing_ids = [k["id"] for k in YTVIS_CATEGORIES_2021 if k["isthing"] == 1]
thing_colors = [k["color"] for k in YTVIS_CATEGORIES_2021 if k["isthing"] == 1]
assert len(thing_ids) == 40, len(thing_ids)
# Mapping from the incontiguous YTVIS category id to an id in [0, 39]
thing_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(thing_ids)}
thing_classes = [k["name"] for k in YTVIS_CATEGORIES_2021 if k["isthing"] == 1]
ret = {
"thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
"thing_classes": thing_classes,
"thing_colors": thing_colors,
}
return ret
def load_ytvis_json(json_file, image_root, dataset_name=None, extra_annotation_keys=None):
from .ytvis_api.ytvos import YTVOS
timer = Timer()
json_file = PathManager.get_local_path(json_file)
with contextlib.redirect_stdout(io.StringIO()):
ytvis_api = YTVOS(json_file)
if timer.seconds() > 1:
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
id_map = None
if dataset_name is not None:
meta = MetadataCatalog.get(dataset_name)
cat_ids = sorted(ytvis_api.getCatIds())
cats = ytvis_api.loadCats(cat_ids)
# The categories in a custom json file may not be sorted.
thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])]
meta.thing_classes = thing_classes
# In COCO, certain category ids are artificially removed,
# and by convention they are always ignored.
# We deal with COCO's id issue and translate
# the category ids to contiguous ids in [0, 80).
# It works by looking at the "categories" field in the json, therefore
# if users' own json also have incontiguous ids, we'll
# apply this mapping as well but print a warning.
if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)):
if "coco" not in dataset_name:
logger.warning(
"""
Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.
"""
)
id_map = {v: i for i, v in enumerate(cat_ids)}
meta.thing_dataset_id_to_contiguous_id = id_map
# sort indices for reproducible results
vid_ids = sorted(ytvis_api.vids.keys())
# vids is a list of dicts, each looks something like:
# {'license': 1,
# 'flickr_url': ' ',
# 'file_names': ['ff25f55852/00000.jpg', 'ff25f55852/00005.jpg', ..., 'ff25f55852/00175.jpg'],
# 'height': 720,
# 'width': 1280,
# 'length': 36,
# 'date_captured': '2019-04-11 00:55:41.903902',
# 'id': 2232}
vids = ytvis_api.loadVids(vid_ids)
anns = [ytvis_api.vidToAnns[vid_id] for vid_id in vid_ids]
total_num_valid_anns = sum([len(x) for x in anns])
total_num_anns = len(ytvis_api.anns)
if total_num_valid_anns < total_num_anns:
logger.warning(
f"{json_file} contains {total_num_anns} annotations, but only "
f"{total_num_valid_anns} of them match to images in the file."
)
vids_anns = list(zip(vids, anns))
logger.info("Loaded {} videos in YTVIS format from {}".format(len(vids_anns), json_file))
dataset_dicts = []
ann_keys = ["iscrowd", "category_id", "id"] + (extra_annotation_keys or [])
num_instances_without_valid_segmentation = 0
for (vid_dict, anno_dict_list) in vids_anns:
record = {}
record["file_names"] = [os.path.join(image_root, vid_dict["file_names"][i]) for i in range(vid_dict["length"])]
record["height"] = vid_dict["height"]
record["width"] = vid_dict["width"]
record["length"] = vid_dict["length"]
video_id = record["video_id"] = vid_dict["id"]
video_objs = []
for frame_idx in range(record["length"]):
frame_objs = []
for anno in anno_dict_list:
assert anno["video_id"] == video_id
obj = {key: anno[key] for key in ann_keys if key in anno}
_bboxes = anno.get("bboxes", None)
_segm = anno.get("segmentations", None)
if not (_bboxes and _segm and _bboxes[frame_idx] and _segm[frame_idx]):
continue
bbox = _bboxes[frame_idx]
segm = _segm[frame_idx]
obj["bbox"] = bbox
obj["bbox_mode"] = BoxMode.XYWH_ABS
if isinstance(segm, dict):
if isinstance(segm["counts"], list):
# convert to compressed RLE
segm = mask_util.frPyObjects(segm, *segm["size"])
elif segm:
# filter out invalid polygons (< 3 points)
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
if len(segm) == 0:
num_instances_without_valid_segmentation += 1
continue # ignore this instance
obj["segmentation"] = segm
if id_map:
obj["category_id"] = id_map[obj["category_id"]]
frame_objs.append(obj)
video_objs.append(frame_objs)
record["annotations"] = video_objs
dataset_dicts.append(record)
if num_instances_without_valid_segmentation > 0:
logger.warning(
"Filtered out {} instances without valid segmentation. ".format(
num_instances_without_valid_segmentation
)
+ "There might be issues in your dataset generation process. "
"A valid polygon should be a list[float] with even length >= 6."
)
return dataset_dicts
def register_ytvis_instances(name, metadata, json_file, image_root):
"""
Register a dataset in YTVIS's json annotation format for
instance tracking.
Args:
name (str): the name that identifies a dataset, e.g. "ytvis_train".
metadata (dict): extra metadata associated with this dataset. You can
leave it as an empty dict.
json_file (str): path to the json instance annotation file.
image_root (str or path-like): directory which contains all the images.
"""
assert isinstance(name, str), name
assert isinstance(json_file, (str, os.PathLike)), json_file
assert isinstance(image_root, (str, os.PathLike)), image_root
# 1. register a function which returns dicts
DatasetCatalog.register(name, lambda: load_ytvis_json(json_file, image_root, name))
# 2. Optionally, add metadata about this dataset,
# since they might be useful in evaluation, visualization or logging
MetadataCatalog.get(name).set(
json_file=json_file, image_root=image_root, evaluator_type="ytvis", **metadata
)
if __name__ == "__main__":
"""
Test the YTVIS json dataset loader.
"""
from detectron2.utils.logger import setup_logger
from detectron2.utils.visualizer import Visualizer
import detectron2.data.datasets # noqa # add pre-defined metadata
import sys
from PIL import Image
logger = setup_logger(name=__name__)
#assert sys.argv[3] in DatasetCatalog.list()
meta = MetadataCatalog.get("ytvis_2019_train")
json_file = "./datasets/ytvis/instances_train_sub.json"
image_root = "./datasets/ytvis/train/JPEGImages"
dicts = load_ytvis_json(json_file, image_root, dataset_name="ytvis_2019_train")
logger.info("Done loading {} samples.".format(len(dicts)))
dirname = "ytvis-data-vis"
os.makedirs(dirname, exist_ok=True)
def extract_frame_dic(dic, frame_idx):
import copy
frame_dic = copy.deepcopy(dic)
annos = frame_dic.get("annotations", None)
if annos:
frame_dic["annotations"] = annos[frame_idx]
return frame_dic
for d in dicts:
vid_name = d["file_names"][0].split('/')[-2]
os.makedirs(os.path.join(dirname, vid_name), exist_ok=True)
for idx, file_name in enumerate(d["file_names"]):
img = np.array(Image.open(file_name))
visualizer = Visualizer(img, metadata=meta)
vis = visualizer.draw_dataset_dict(extract_frame_dic(d, idx))
fpath = os.path.join(dirname, vid_name, file_name.split('/')[-1])
vis.save(fpath)