Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import math | |
from typing import Tuple | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.data import MetadataCatalog | |
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head | |
from detectron2.modeling.backbone import Backbone | |
from detectron2.modeling.postprocessing import sem_seg_postprocess | |
from detectron2.structures import Boxes, ImageList, Instances, BitMasks | |
from .modeling.criterion import VideoSetCriterion | |
from .modeling.matcher import VideoHungarianMatcher | |
from .utils.memory import retry_if_cuda_oom | |
logger = logging.getLogger(__name__) | |
class VideoMaskFormer(nn.Module): | |
""" | |
Main class for mask classification semantic segmentation architectures. | |
""" | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
criterion: nn.Module, | |
num_queries: int, | |
object_mask_threshold: float, | |
overlap_threshold: float, | |
metadata, | |
size_divisibility: int, | |
sem_seg_postprocess_before_inference: bool, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
# video | |
num_frames, | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
criterion: a module that defines the loss | |
num_queries: int, number of queries | |
object_mask_threshold: float, threshold to filter query based on classification score | |
for panoptic segmentation inference | |
overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
segmentation inference | |
size_divisibility: Some backbones require the input height and width to be divisible by a | |
specific integer. We can use this to override such requirement. | |
sem_seg_postprocess_before_inference: whether to resize the prediction back | |
to original input size before semantic segmentation inference or after. | |
For high-resolution dataset like Mapillary, resizing predictions before | |
inference will cause OOM error. | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
semantic_on: bool, whether to output semantic segmentation prediction | |
instance_on: bool, whether to output instance segmentation prediction | |
panoptic_on: bool, whether to output panoptic segmentation prediction | |
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
""" | |
super().__init__() | |
self.backbone = backbone | |
self.sem_seg_head = sem_seg_head | |
self.criterion = criterion | |
self.num_queries = num_queries | |
self.overlap_threshold = overlap_threshold | |
self.object_mask_threshold = object_mask_threshold | |
self.metadata = metadata | |
if size_divisibility < 0: | |
# use backbone size_divisibility if not set | |
size_divisibility = self.backbone.size_divisibility | |
self.size_divisibility = size_divisibility | |
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) | |
self.num_frames = num_frames | |
def from_config(cls, cfg): | |
backbone = build_backbone(cfg) | |
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape()) | |
# Loss parameters: | |
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION | |
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT | |
# loss weights | |
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT | |
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT | |
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT | |
# building criterion | |
matcher = VideoHungarianMatcher( | |
cost_class=class_weight, | |
cost_mask=mask_weight, | |
cost_dice=dice_weight, | |
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, | |
) | |
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight} | |
if deep_supervision: | |
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS | |
aux_weight_dict = {} | |
for i in range(dec_layers - 1): | |
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) | |
weight_dict.update(aux_weight_dict) | |
losses = ["labels", "masks"] | |
criterion = VideoSetCriterion( | |
sem_seg_head.num_classes, | |
matcher=matcher, | |
weight_dict=weight_dict, | |
eos_coef=no_object_weight, | |
losses=losses, | |
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, | |
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO, | |
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO, | |
) | |
return { | |
"backbone": backbone, | |
"sem_seg_head": sem_seg_head, | |
"criterion": criterion, | |
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES, | |
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD, | |
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD, | |
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), | |
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY, | |
"sem_seg_postprocess_before_inference": True, | |
"pixel_mean": cfg.MODEL.PIXEL_MEAN, | |
"pixel_std": cfg.MODEL.PIXEL_STD, | |
# video | |
"num_frames": cfg.INPUT.SAMPLING_FRAME_NUM, | |
} | |
def device(self): | |
return self.pixel_mean.device | |
def forward(self, batched_inputs): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": per-region ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "sem_seg": | |
A Tensor that represents the | |
per-pixel segmentation prediced by the head. | |
The prediction has shape KxHxW that represents the logits of | |
each class for each pixel. | |
* "panoptic_seg": | |
A tuple that represent panoptic output | |
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
Each dict contains keys "id", "category_id", "isthing". | |
""" | |
images = [] | |
for video in batched_inputs: | |
for frame in video["image"]: | |
images.append(frame.to(self.device)) | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features) | |
if self.training: | |
# mask classification target | |
targets = self.prepare_targets(batched_inputs, images) | |
# bipartite matching-based loss | |
losses = self.criterion(outputs, targets) | |
for k in list(losses.keys()): | |
if k in self.criterion.weight_dict: | |
losses[k] *= self.criterion.weight_dict[k] | |
else: | |
# remove this loss if not specified in `weight_dict` | |
losses.pop(k) | |
return losses | |
else: | |
mask_cls_results = outputs["pred_logits"] | |
mask_pred_results = outputs["pred_masks"] | |
mask_cls_result = mask_cls_results[0] | |
# upsample masks | |
mask_pred_result = retry_if_cuda_oom(F.interpolate)( | |
mask_pred_results[0], | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
del outputs | |
input_per_image = batched_inputs[0] | |
image_size = images.image_sizes[0] # image size without padding after data augmentation | |
height = input_per_image.get("height", image_size[0]) # raw image size before data augmentation | |
width = input_per_image.get("width", image_size[1]) | |
return retry_if_cuda_oom(self.inference_video)(mask_cls_result, mask_pred_result, image_size, height, width) | |
def prepare_targets(self, targets, images): | |
h_pad, w_pad = images.tensor.shape[-2:] | |
gt_instances = [] | |
for targets_per_video in targets: | |
_num_instance = len(targets_per_video["instances"][0]) | |
mask_shape = [_num_instance, self.num_frames, h_pad, w_pad] | |
gt_masks_per_video = torch.zeros(mask_shape, dtype=torch.bool, device=self.device) | |
gt_ids_per_video = [] | |
for f_i, targets_per_frame in enumerate(targets_per_video["instances"]): | |
targets_per_frame = targets_per_frame.to(self.device) | |
h, w = targets_per_frame.image_size | |
gt_ids_per_video.append(targets_per_frame.gt_ids[:, None]) | |
gt_masks_per_video[:, f_i, :h, :w] = targets_per_frame.gt_masks.tensor | |
gt_ids_per_video = torch.cat(gt_ids_per_video, dim=1) | |
valid_idx = (gt_ids_per_video != -1).any(dim=-1) | |
gt_classes_per_video = targets_per_frame.gt_classes[valid_idx] # N, | |
gt_ids_per_video = gt_ids_per_video[valid_idx] # N, num_frames | |
gt_instances.append({"labels": gt_classes_per_video, "ids": gt_ids_per_video}) | |
gt_masks_per_video = gt_masks_per_video[valid_idx].float() # N, num_frames, H, W | |
gt_instances[-1].update({"masks": gt_masks_per_video}) | |
return gt_instances | |
def inference_video(self, pred_cls, pred_masks, img_size, output_height, output_width): | |
if len(pred_cls) > 0: | |
scores = F.softmax(pred_cls, dim=-1)[:, :-1] | |
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
# keep top-10 predictions | |
scores_per_image, topk_indices = scores.flatten(0, 1).topk(10, sorted=False) | |
labels_per_image = labels[topk_indices] | |
topk_indices = topk_indices // self.sem_seg_head.num_classes | |
pred_masks = pred_masks[topk_indices] | |
pred_masks = pred_masks[:, :, : img_size[0], : img_size[1]] | |
pred_masks = F.interpolate( | |
pred_masks, size=(output_height, output_width), mode="bilinear", align_corners=False | |
) | |
masks = pred_masks > 0. | |
out_scores = scores_per_image.tolist() | |
out_labels = labels_per_image.tolist() | |
out_masks = [m for m in masks.cpu()] | |
else: | |
out_scores = [] | |
out_labels = [] | |
out_masks = [] | |
video_output = { | |
"image_size": (output_height, output_width), | |
"pred_scores": out_scores, | |
"pred_labels": out_labels, | |
"pred_masks": out_masks, | |
} | |
return video_output | |