Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,40 +10,50 @@ os.system("python setup.py build install")
|
|
10 |
os.chdir("/home/user/app/Mask2Former/")
|
11 |
import gradio as gr
|
12 |
# check pytorch installation:
|
13 |
-
import torch, torchvision
|
14 |
-
print(torch.__version__, torch.cuda.is_available())
|
15 |
-
assert torch.__version__.startswith("1.9") # please manually install torch 1.9 if Colab changes its default version
|
16 |
-
# Some basic setup:
|
17 |
-
# Setup detectron2 logger
|
18 |
import detectron2
|
19 |
from detectron2.utils.logger import setup_logger
|
|
|
|
|
20 |
|
21 |
# import some common libraries
|
22 |
import numpy as np
|
23 |
-
import
|
|
|
|
|
24 |
|
25 |
# import some common detectron2 utilities
|
26 |
from detectron2 import model_zoo
|
27 |
from detectron2.engine import DefaultPredictor
|
28 |
from detectron2.config import get_cfg
|
29 |
-
from detectron2.utils.visualizer import Visualizer
|
30 |
-
from detectron2.data import MetadataCatalog
|
31 |
-
from
|
|
|
|
|
|
|
|
|
32 |
|
33 |
cfg = get_cfg()
|
34 |
cfg.MODEL.DEVICE='cpu'
|
35 |
-
|
36 |
-
cfg
|
37 |
-
cfg.
|
38 |
-
|
39 |
-
cfg.MODEL.
|
|
|
|
|
40 |
predictor = DefaultPredictor(cfg)
|
|
|
|
|
41 |
def inference(img):
|
42 |
-
im = cv2.imread(img
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
|
49 |
title = "Detectron 2"
|
@@ -52,7 +62,7 @@ article = "<p style='text-align: center'><a href='https://ai.facebook.com/blog/-
|
|
52 |
|
53 |
examples = [['airplane.png']]
|
54 |
|
55 |
-
gr.Interface(inference, inputs=gr.inputs.Image(type="
|
56 |
description=description,
|
57 |
article=article,
|
58 |
examples=examples).launch()
|
|
|
10 |
os.chdir("/home/user/app/Mask2Former/")
|
11 |
import gradio as gr
|
12 |
# check pytorch installation:
|
|
|
|
|
|
|
|
|
|
|
13 |
import detectron2
|
14 |
from detectron2.utils.logger import setup_logger
|
15 |
+
setup_logger()
|
16 |
+
setup_logger(name="mask2former")
|
17 |
|
18 |
# import some common libraries
|
19 |
import numpy as np
|
20 |
+
import cv2
|
21 |
+
import torch
|
22 |
+
from google.colab.patches import cv2_imshow
|
23 |
|
24 |
# import some common detectron2 utilities
|
25 |
from detectron2 import model_zoo
|
26 |
from detectron2.engine import DefaultPredictor
|
27 |
from detectron2.config import get_cfg
|
28 |
+
from detectron2.utils.visualizer import Visualizer, ColorMode
|
29 |
+
from detectron2.data import MetadataCatalog
|
30 |
+
from detectron2.projects.deeplab import add_deeplab_config
|
31 |
+
coco_metadata = MetadataCatalog.get("coco_2017_val_panoptic")
|
32 |
+
|
33 |
+
# import Mask2Former project
|
34 |
+
from mask2former import add_maskformer2_config
|
35 |
|
36 |
cfg = get_cfg()
|
37 |
cfg.MODEL.DEVICE='cpu'
|
38 |
+
add_deeplab_config(cfg)
|
39 |
+
add_maskformer2_config(cfg)
|
40 |
+
cfg.merge_from_file("configs/coco/panoptic-segmentation/swin/maskformer2_swin_large_IN21k_384_bs16_100ep.yaml")
|
41 |
+
cfg.MODEL.WEIGHTS = 'https://dl.fbaipublicfiles.com/maskformer/mask2former/coco/panoptic/maskformer2_swin_large_IN21k_384_bs16_100ep/model_final_f07440.pkl'
|
42 |
+
cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON = True
|
43 |
+
cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON = True
|
44 |
+
cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = True
|
45 |
predictor = DefaultPredictor(cfg)
|
46 |
+
outputs = predictor(im)
|
47 |
+
|
48 |
def inference(img):
|
49 |
+
im = cv2.imread(img)
|
50 |
+
v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)
|
51 |
+
panoptic_result = v.draw_panoptic_seg(outputs["panoptic_seg"][0].to("cpu"), outputs["panoptic_seg"][1]).get_image()
|
52 |
+
v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)
|
53 |
+
instance_result = v.draw_instance_predictions(outputs["instances"].to("cpu")).get_image()
|
54 |
+
v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)
|
55 |
+
semantic_result = v.draw_sem_seg(outputs["sem_seg"].argmax(0).to("cpu")).get_image()
|
56 |
+
return Image.fromarray(np.uint8(panoptic_result)).convert('RGB'),Image.fromarray(np.uint8(instance_result)).convert('RGB'),Image.fromarray(np.uint8(semantic_result)).convert('RGB')
|
57 |
|
58 |
|
59 |
title = "Detectron 2"
|
|
|
62 |
|
63 |
examples = [['airplane.png']]
|
64 |
|
65 |
+
gr.Interface(inference, inputs=gr.inputs.Image(type="filepath"), outputs=[gr.outputs.Image(label="Panoptic segmentation",type="pil"),gr.outputs.Image(label="instance segmentation",type="pil"),gr.outputs.Image(label="semantic segmentation",type="pil")],enable_queue=True, title=title,
|
66 |
description=description,
|
67 |
article=article,
|
68 |
examples=examples).launch()
|