Spaces:
Runtime error
Runtime error
File size: 8,658 Bytes
5019931 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import argparse
import logging
import os
import pathlib
from functools import partial
from typing import List, NoReturn
import pytorch_lightning as pl
from pytorch_lightning.plugins import DDPPlugin
from bytesep.callbacks import get_callbacks
from bytesep.data.augmentors import Augmentor
from bytesep.data.batch_data_preprocessors import (
get_batch_data_preprocessor_class,
)
from bytesep.data.data_modules import DataModule, Dataset
from bytesep.data.samplers import SegmentSampler
from bytesep.losses import get_loss_function
from bytesep.models.lightning_modules import (
LitSourceSeparation,
get_model_class,
)
from bytesep.optimizers.lr_schedulers import get_lr_lambda
from bytesep.utils import (
create_logging,
get_pitch_shift_factor,
read_yaml,
check_configs_gramma,
)
def get_dirs(
workspace: str, task_name: str, filename: str, config_yaml: str, gpus: int
) -> List[str]:
r"""Get directories.
Args:
workspace: str
task_name, str, e.g., 'musdb18'
filenmae: str
config_yaml: str
gpus: int, e.g., 0 for cpu and 8 for training with 8 gpu cards
Returns:
checkpoints_dir: str
logs_dir: str
logger: pl.loggers.TensorBoardLogger
statistics_path: str
"""
# save checkpoints dir
checkpoints_dir = os.path.join(
workspace,
"checkpoints",
task_name,
filename,
"config={},gpus={}".format(pathlib.Path(config_yaml).stem, gpus),
)
os.makedirs(checkpoints_dir, exist_ok=True)
# logs dir
logs_dir = os.path.join(
workspace,
"logs",
task_name,
filename,
"config={},gpus={}".format(pathlib.Path(config_yaml).stem, gpus),
)
os.makedirs(logs_dir, exist_ok=True)
# loggings
create_logging(logs_dir, filemode='w')
logging.info(args)
# tensorboard logs dir
tb_logs_dir = os.path.join(workspace, "tensorboard_logs")
os.makedirs(tb_logs_dir, exist_ok=True)
experiment_name = os.path.join(task_name, filename, pathlib.Path(config_yaml).stem)
logger = pl.loggers.TensorBoardLogger(save_dir=tb_logs_dir, name=experiment_name)
# statistics path
statistics_path = os.path.join(
workspace,
"statistics",
task_name,
filename,
"config={},gpus={}".format(pathlib.Path(config_yaml).stem, gpus),
"statistics.pkl",
)
os.makedirs(os.path.dirname(statistics_path), exist_ok=True)
return checkpoints_dir, logs_dir, logger, statistics_path
def _get_data_module(
workspace: str, config_yaml: str, num_workers: int, distributed: bool
) -> DataModule:
r"""Create data_module. Mini-batch data can be obtained by:
code-block:: python
data_module.setup()
for batch_data_dict in data_module.train_dataloader():
print(batch_data_dict.keys())
break
Args:
workspace: str
config_yaml: str
num_workers: int, e.g., 0 for non-parallel and 8 for using cpu cores
for preparing data in parallel
distributed: bool
Returns:
data_module: DataModule
"""
configs = read_yaml(config_yaml)
input_source_types = configs['train']['input_source_types']
indexes_path = os.path.join(workspace, configs['train']['indexes_dict'])
sample_rate = configs['train']['sample_rate']
segment_seconds = configs['train']['segment_seconds']
mixaudio_dict = configs['train']['augmentations']['mixaudio']
augmentations = configs['train']['augmentations']
max_pitch_shift = max(
[
augmentations['pitch_shift'][source_type]
for source_type in input_source_types
]
)
batch_size = configs['train']['batch_size']
steps_per_epoch = configs['train']['steps_per_epoch']
segment_samples = int(segment_seconds * sample_rate)
ex_segment_samples = int(segment_samples * get_pitch_shift_factor(max_pitch_shift))
# sampler
train_sampler = SegmentSampler(
indexes_path=indexes_path,
segment_samples=ex_segment_samples,
mixaudio_dict=mixaudio_dict,
batch_size=batch_size,
steps_per_epoch=steps_per_epoch,
)
# augmentor
augmentor = Augmentor(augmentations=augmentations)
# dataset
train_dataset = Dataset(augmentor, segment_samples)
# data module
data_module = DataModule(
train_sampler=train_sampler,
train_dataset=train_dataset,
num_workers=num_workers,
distributed=distributed,
)
return data_module
def train(args) -> NoReturn:
r"""Train & evaluate and save checkpoints.
Args:
workspace: str, directory of workspace
gpus: int
config_yaml: str, path of config file for training
"""
# arugments & parameters
workspace = args.workspace
gpus = args.gpus
config_yaml = args.config_yaml
filename = args.filename
num_workers = 8
distributed = True if gpus > 1 else False
evaluate_device = "cuda" if gpus > 0 else "cpu"
# Read config file.
configs = read_yaml(config_yaml)
check_configs_gramma(configs)
task_name = configs['task_name']
target_source_types = configs['train']['target_source_types']
target_sources_num = len(target_source_types)
channels = configs['train']['channels']
batch_data_preprocessor_type = configs['train']['batch_data_preprocessor']
model_type = configs['train']['model_type']
loss_type = configs['train']['loss_type']
optimizer_type = configs['train']['optimizer_type']
learning_rate = float(configs['train']['learning_rate'])
precision = configs['train']['precision']
early_stop_steps = configs['train']['early_stop_steps']
warm_up_steps = configs['train']['warm_up_steps']
reduce_lr_steps = configs['train']['reduce_lr_steps']
# paths
checkpoints_dir, logs_dir, logger, statistics_path = get_dirs(
workspace, task_name, filename, config_yaml, gpus
)
# training data module
data_module = _get_data_module(
workspace=workspace,
config_yaml=config_yaml,
num_workers=num_workers,
distributed=distributed,
)
# batch data preprocessor
BatchDataPreprocessor = get_batch_data_preprocessor_class(
batch_data_preprocessor_type=batch_data_preprocessor_type
)
batch_data_preprocessor = BatchDataPreprocessor(
target_source_types=target_source_types
)
# model
Model = get_model_class(model_type=model_type)
model = Model(input_channels=channels, target_sources_num=target_sources_num)
# loss function
loss_function = get_loss_function(loss_type=loss_type)
# callbacks
callbacks = get_callbacks(
task_name=task_name,
config_yaml=config_yaml,
workspace=workspace,
checkpoints_dir=checkpoints_dir,
statistics_path=statistics_path,
logger=logger,
model=model,
evaluate_device=evaluate_device,
)
# callbacks = []
# learning rate reduce function
lr_lambda = partial(
get_lr_lambda, warm_up_steps=warm_up_steps, reduce_lr_steps=reduce_lr_steps
)
# pytorch-lightning model
pl_model = LitSourceSeparation(
batch_data_preprocessor=batch_data_preprocessor,
model=model,
optimizer_type=optimizer_type,
loss_function=loss_function,
learning_rate=learning_rate,
lr_lambda=lr_lambda,
)
# trainer
trainer = pl.Trainer(
checkpoint_callback=False,
gpus=gpus,
callbacks=callbacks,
max_steps=early_stop_steps,
accelerator="ddp",
sync_batchnorm=True,
precision=precision,
replace_sampler_ddp=False,
plugins=[DDPPlugin(find_unused_parameters=True)],
profiler='simple',
)
# Fit, evaluate, and save checkpoints.
trainer.fit(pl_model, data_module)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="")
subparsers = parser.add_subparsers(dest="mode")
parser_train = subparsers.add_parser("train")
parser_train.add_argument(
"--workspace", type=str, required=True, help="Directory of workspace."
)
parser_train.add_argument("--gpus", type=int, required=True)
parser_train.add_argument(
"--config_yaml",
type=str,
required=True,
help="Path of config file for training.",
)
args = parser.parse_args()
args.filename = pathlib.Path(__file__).stem
if args.mode == "train":
train(args)
else:
raise Exception("Error argument!")
|