Spaces:
Runtime error
Runtime error
akhaliq3
commited on
Commit
·
1a2ae11
1
Parent(s):
ee8f6ac
inference update
Browse files- brush/brush_large_horizontal.png +0 -0
- brush/brush_large_vertical.png +0 -0
- brush/brush_small_horizontal.png +0 -0
- brush/brush_small_vertical.png +0 -0
- inference.py +496 -0
- input/.DS_Store +0 -0
- input/temp.txt +0 -0
- morphology.py +51 -0
- network.py +84 -0
brush/brush_large_horizontal.png
ADDED
brush/brush_large_vertical.png
ADDED
brush/brush_small_horizontal.png
ADDED
brush/brush_small_vertical.png
ADDED
inference.py
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import network
|
6 |
+
import morphology
|
7 |
+
import os
|
8 |
+
import math
|
9 |
+
|
10 |
+
idx = 0
|
11 |
+
|
12 |
+
|
13 |
+
def save_img(img, output_path):
|
14 |
+
result = Image.fromarray((img.data.cpu().numpy().transpose((1, 2, 0)) * 255).astype(np.uint8))
|
15 |
+
result.save(output_path)
|
16 |
+
|
17 |
+
|
18 |
+
def param2stroke(param, H, W, meta_brushes):
|
19 |
+
"""
|
20 |
+
Input a set of stroke parameters and output its corresponding foregrounds and alpha maps.
|
21 |
+
Args:
|
22 |
+
param: a tensor with shape n_strokes x n_param_per_stroke. Here, param_per_stroke is 8:
|
23 |
+
x_center, y_center, width, height, theta, R, G, and B.
|
24 |
+
H: output height.
|
25 |
+
W: output width.
|
26 |
+
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
|
27 |
+
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
foregrounds: a tensor with shape n_strokes x 3 x H x W, containing color information.
|
31 |
+
alphas: a tensor with shape n_strokes x 3 x H x W,
|
32 |
+
containing binary information of whether a pixel is belonging to the stroke (alpha mat), for painting process.
|
33 |
+
"""
|
34 |
+
# Firstly, resize the meta brushes to the required shape,
|
35 |
+
# in order to decrease GPU memory especially when the required shape is small.
|
36 |
+
meta_brushes_resize = F.interpolate(meta_brushes, (H, W))
|
37 |
+
b = param.shape[0]
|
38 |
+
# Extract shape parameters and color parameters.
|
39 |
+
param_list = torch.split(param, 1, dim=1)
|
40 |
+
x0, y0, w, h, theta = [item.squeeze(-1) for item in param_list[:5]]
|
41 |
+
R, G, B = param_list[5:]
|
42 |
+
# Pre-compute sin theta and cos theta
|
43 |
+
sin_theta = torch.sin(torch.acos(torch.tensor(-1., device=param.device)) * theta)
|
44 |
+
cos_theta = torch.cos(torch.acos(torch.tensor(-1., device=param.device)) * theta)
|
45 |
+
# index means each stroke should use which meta stroke? Vertical meta stroke or horizontal meta stroke.
|
46 |
+
# When h > w, vertical stroke should be used. When h <= w, horizontal stroke should be used.
|
47 |
+
index = torch.full((b,), -1, device=param.device, dtype=torch.long)
|
48 |
+
index[h > w] = 0
|
49 |
+
index[h <= w] = 1
|
50 |
+
brush = meta_brushes_resize[index.long()]
|
51 |
+
|
52 |
+
# Calculate warp matrix according to the rules defined by pytorch, in order for warping.
|
53 |
+
warp_00 = cos_theta / w
|
54 |
+
warp_01 = sin_theta * H / (W * w)
|
55 |
+
warp_02 = (1 - 2 * x0) * cos_theta / w + (1 - 2 * y0) * sin_theta * H / (W * w)
|
56 |
+
warp_10 = -sin_theta * W / (H * h)
|
57 |
+
warp_11 = cos_theta / h
|
58 |
+
warp_12 = (1 - 2 * y0) * cos_theta / h - (1 - 2 * x0) * sin_theta * W / (H * h)
|
59 |
+
warp_0 = torch.stack([warp_00, warp_01, warp_02], dim=1)
|
60 |
+
warp_1 = torch.stack([warp_10, warp_11, warp_12], dim=1)
|
61 |
+
warp = torch.stack([warp_0, warp_1], dim=1)
|
62 |
+
# Conduct warping.
|
63 |
+
grid = F.affine_grid(warp, [b, 3, H, W], align_corners=False)
|
64 |
+
brush = F.grid_sample(brush, grid, align_corners=False)
|
65 |
+
# alphas is the binary information suggesting whether a pixel is belonging to the stroke.
|
66 |
+
alphas = (brush > 0).float()
|
67 |
+
brush = brush.repeat(1, 3, 1, 1)
|
68 |
+
alphas = alphas.repeat(1, 3, 1, 1)
|
69 |
+
# Give color to foreground strokes.
|
70 |
+
color_map = torch.cat([R, G, B], dim=1)
|
71 |
+
color_map = color_map.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, H, W)
|
72 |
+
foreground = brush * color_map
|
73 |
+
# Dilation and erosion are used for foregrounds and alphas respectively to prevent artifacts on stroke borders.
|
74 |
+
foreground = morphology.dilation(foreground)
|
75 |
+
alphas = morphology.erosion(alphas)
|
76 |
+
return foreground, alphas
|
77 |
+
|
78 |
+
|
79 |
+
def param2img_serial(
|
80 |
+
param, decision, meta_brushes, cur_canvas, frame_dir, has_border=False, original_h=None, original_w=None):
|
81 |
+
"""
|
82 |
+
Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
|
83 |
+
and whether there is a border (if intermediate painting results are required).
|
84 |
+
Output the painting results of adding the corresponding strokes on the current canvas.
|
85 |
+
Args:
|
86 |
+
param: a tensor with shape batch size x patch along height dimension x patch along width dimension
|
87 |
+
x n_stroke_per_patch x n_param_per_stroke
|
88 |
+
decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
|
89 |
+
x n_stroke_per_patch
|
90 |
+
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
|
91 |
+
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
|
92 |
+
cur_canvas: a tensor with shape batch size x 3 x H x W,
|
93 |
+
where H and W denote height and width of padded results of original images.
|
94 |
+
frame_dir: directory to save intermediate painting results. None means intermediate results are not required.
|
95 |
+
has_border: on the last painting layer, in order to make sure that the painting results do not miss
|
96 |
+
any important detail, we choose to paint again on this layer but shift patch_size // 2 pixels when
|
97 |
+
cutting patches. In this case, if intermediate results are required, we need to cut the shifted length
|
98 |
+
on the border before saving, or there would be a black border.
|
99 |
+
original_h: to indicate the original height for cropping when saving intermediate results.
|
100 |
+
original_w: to indicate the original width for cropping when saving intermediate results.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
|
104 |
+
"""
|
105 |
+
# param: b, h, w, stroke_per_patch, param_per_stroke
|
106 |
+
# decision: b, h, w, stroke_per_patch
|
107 |
+
b, h, w, s, p = param.shape
|
108 |
+
H, W = cur_canvas.shape[-2:]
|
109 |
+
is_odd_y = h % 2 == 1
|
110 |
+
is_odd_x = w % 2 == 1
|
111 |
+
patch_size_y = 2 * H // h
|
112 |
+
patch_size_x = 2 * W // w
|
113 |
+
even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device)
|
114 |
+
even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device)
|
115 |
+
odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device)
|
116 |
+
odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device)
|
117 |
+
even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x])
|
118 |
+
odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x])
|
119 |
+
even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x])
|
120 |
+
odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
|
121 |
+
cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
|
122 |
+
patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
|
123 |
+
|
124 |
+
def partial_render(this_canvas, patch_coord_y, patch_coord_x, stroke_id):
|
125 |
+
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
|
126 |
+
stride=(patch_size_y // 2, patch_size_x // 2))
|
127 |
+
# canvas_patch: b, 3 * py * px, h * w
|
128 |
+
canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous()
|
129 |
+
canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous()
|
130 |
+
# canvas_patch: b, h, w, 3, py, px
|
131 |
+
selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :]
|
132 |
+
selected_h, selected_w = selected_canvas_patch.shape[1:3]
|
133 |
+
selected_param = param[:, patch_coord_y, patch_coord_x, stroke_id, :].view(-1, p).contiguous()
|
134 |
+
selected_decision = decision[:, patch_coord_y, patch_coord_x, stroke_id].view(-1).contiguous()
|
135 |
+
selected_foregrounds = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x,
|
136 |
+
device=this_canvas.device)
|
137 |
+
selected_alphas = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x, device=this_canvas.device)
|
138 |
+
if selected_param[selected_decision, :].shape[0] > 0:
|
139 |
+
selected_foregrounds[selected_decision, :, :, :], selected_alphas[selected_decision, :, :, :] = \
|
140 |
+
param2stroke(selected_param[selected_decision, :], patch_size_y, patch_size_x, meta_brushes)
|
141 |
+
selected_foregrounds = selected_foregrounds.view(
|
142 |
+
b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous()
|
143 |
+
selected_alphas = selected_alphas.view(b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous()
|
144 |
+
selected_decision = selected_decision.view(b, selected_h, selected_w, 1, 1, 1).contiguous()
|
145 |
+
selected_canvas_patch = selected_foregrounds * selected_alphas * selected_decision + selected_canvas_patch * (
|
146 |
+
1 - selected_alphas * selected_decision)
|
147 |
+
this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous()
|
148 |
+
# this_canvas: b, 3, selected_h, py, selected_w, px
|
149 |
+
this_canvas = this_canvas.view(b, 3, selected_h * patch_size_y, selected_w * patch_size_x).contiguous()
|
150 |
+
# this_canvas: b, 3, selected_h * py, selected_w * px
|
151 |
+
return this_canvas
|
152 |
+
|
153 |
+
global idx
|
154 |
+
if has_border:
|
155 |
+
factor = 2
|
156 |
+
else:
|
157 |
+
factor = 4
|
158 |
+
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
159 |
+
for i in range(s):
|
160 |
+
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x, i)
|
161 |
+
if not is_odd_y:
|
162 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
|
163 |
+
if not is_odd_x:
|
164 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
165 |
+
cur_canvas = canvas
|
166 |
+
idx += 1
|
167 |
+
if frame_dir is not None:
|
168 |
+
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
|
169 |
+
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
170 |
+
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
171 |
+
|
172 |
+
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
173 |
+
for i in range(s):
|
174 |
+
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x, i)
|
175 |
+
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
|
176 |
+
canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3)
|
177 |
+
if is_odd_y:
|
178 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
|
179 |
+
if is_odd_x:
|
180 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
181 |
+
cur_canvas = canvas
|
182 |
+
idx += 1
|
183 |
+
if frame_dir is not None:
|
184 |
+
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
|
185 |
+
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
186 |
+
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
187 |
+
|
188 |
+
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
189 |
+
for i in range(s):
|
190 |
+
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x, i)
|
191 |
+
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
|
192 |
+
if is_odd_y:
|
193 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
|
194 |
+
if not is_odd_x:
|
195 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
196 |
+
cur_canvas = canvas
|
197 |
+
idx += 1
|
198 |
+
if frame_dir is not None:
|
199 |
+
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
|
200 |
+
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
201 |
+
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
202 |
+
|
203 |
+
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
204 |
+
for i in range(s):
|
205 |
+
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x, i)
|
206 |
+
canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
|
207 |
+
if not is_odd_y:
|
208 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2)
|
209 |
+
if is_odd_x:
|
210 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
211 |
+
cur_canvas = canvas
|
212 |
+
idx += 1
|
213 |
+
if frame_dir is not None:
|
214 |
+
frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor,
|
215 |
+
patch_size_x // factor:-patch_size_x // factor], original_h, original_w)
|
216 |
+
save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx))
|
217 |
+
|
218 |
+
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
|
219 |
+
|
220 |
+
return cur_canvas
|
221 |
+
|
222 |
+
|
223 |
+
def param2img_parallel(param, decision, meta_brushes, cur_canvas):
|
224 |
+
"""
|
225 |
+
Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory,
|
226 |
+
and whether there is a border (if intermediate painting results are required).
|
227 |
+
Output the painting results of adding the corresponding strokes on the current canvas.
|
228 |
+
Args:
|
229 |
+
param: a tensor with shape batch size x patch along height dimension x patch along width dimension
|
230 |
+
x n_stroke_per_patch x n_param_per_stroke
|
231 |
+
decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension
|
232 |
+
x n_stroke_per_patch
|
233 |
+
meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width.
|
234 |
+
The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush.
|
235 |
+
cur_canvas: a tensor with shape batch size x 3 x H x W,
|
236 |
+
where H and W denote height and width of padded results of original images.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results.
|
240 |
+
"""
|
241 |
+
# param: b, h, w, stroke_per_patch, param_per_stroke
|
242 |
+
# decision: b, h, w, stroke_per_patch
|
243 |
+
b, h, w, s, p = param.shape
|
244 |
+
param = param.view(-1, 8).contiguous()
|
245 |
+
decision = decision.view(-1).contiguous().bool()
|
246 |
+
H, W = cur_canvas.shape[-2:]
|
247 |
+
is_odd_y = h % 2 == 1
|
248 |
+
is_odd_x = w % 2 == 1
|
249 |
+
patch_size_y = 2 * H // h
|
250 |
+
patch_size_x = 2 * W // w
|
251 |
+
even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device)
|
252 |
+
even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device)
|
253 |
+
odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device)
|
254 |
+
odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device)
|
255 |
+
even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x])
|
256 |
+
odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x])
|
257 |
+
even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x])
|
258 |
+
odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x])
|
259 |
+
cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4,
|
260 |
+
patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0])
|
261 |
+
foregrounds = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device)
|
262 |
+
alphas = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device)
|
263 |
+
valid_foregrounds, valid_alphas = param2stroke(param[decision, :], patch_size_y, patch_size_x, meta_brushes)
|
264 |
+
foregrounds[decision, :, :, :] = valid_foregrounds
|
265 |
+
alphas[decision, :, :, :] = valid_alphas
|
266 |
+
# foreground, alpha: b * h * w * stroke_per_patch, 3, patch_size_y, patch_size_x
|
267 |
+
foregrounds = foregrounds.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
|
268 |
+
alphas = alphas.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous()
|
269 |
+
# foreground, alpha: b, h, w, stroke_per_patch, 3, render_size_y, render_size_x
|
270 |
+
decision = decision.view(-1, h, w, s, 1, 1, 1).contiguous()
|
271 |
+
|
272 |
+
# decision: b, h, w, stroke_per_patch, 1, 1, 1
|
273 |
+
|
274 |
+
def partial_render(this_canvas, patch_coord_y, patch_coord_x):
|
275 |
+
|
276 |
+
canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x),
|
277 |
+
stride=(patch_size_y // 2, patch_size_x // 2))
|
278 |
+
# canvas_patch: b, 3 * py * px, h * w
|
279 |
+
canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous()
|
280 |
+
canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous()
|
281 |
+
# canvas_patch: b, h, w, 3, py, px
|
282 |
+
selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :]
|
283 |
+
selected_foregrounds = foregrounds[:, patch_coord_y, patch_coord_x, :, :, :, :]
|
284 |
+
selected_alphas = alphas[:, patch_coord_y, patch_coord_x, :, :, :, :]
|
285 |
+
selected_decisions = decision[:, patch_coord_y, patch_coord_x, :, :, :, :]
|
286 |
+
for i in range(s):
|
287 |
+
cur_foreground = selected_foregrounds[:, :, :, i, :, :, :]
|
288 |
+
cur_alpha = selected_alphas[:, :, :, i, :, :, :]
|
289 |
+
cur_decision = selected_decisions[:, :, :, i, :, :, :]
|
290 |
+
selected_canvas_patch = cur_foreground * cur_alpha * cur_decision + selected_canvas_patch * (
|
291 |
+
1 - cur_alpha * cur_decision)
|
292 |
+
this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous()
|
293 |
+
# this_canvas: b, 3, h_half, py, w_half, px
|
294 |
+
h_half = this_canvas.shape[2]
|
295 |
+
w_half = this_canvas.shape[4]
|
296 |
+
this_canvas = this_canvas.view(b, 3, h_half * patch_size_y, w_half * patch_size_x).contiguous()
|
297 |
+
# this_canvas: b, 3, h_half * py, w_half * px
|
298 |
+
return this_canvas
|
299 |
+
|
300 |
+
if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
301 |
+
canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x)
|
302 |
+
if not is_odd_y:
|
303 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
|
304 |
+
if not is_odd_x:
|
305 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
306 |
+
cur_canvas = canvas
|
307 |
+
|
308 |
+
if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
309 |
+
canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x)
|
310 |
+
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2)
|
311 |
+
canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3)
|
312 |
+
if is_odd_y:
|
313 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
|
314 |
+
if is_odd_x:
|
315 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
316 |
+
cur_canvas = canvas
|
317 |
+
|
318 |
+
if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0:
|
319 |
+
canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x)
|
320 |
+
canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2)
|
321 |
+
if is_odd_y:
|
322 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2)
|
323 |
+
if not is_odd_x:
|
324 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
325 |
+
cur_canvas = canvas
|
326 |
+
|
327 |
+
if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0:
|
328 |
+
canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x)
|
329 |
+
canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3)
|
330 |
+
if not is_odd_y:
|
331 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2)
|
332 |
+
if is_odd_x:
|
333 |
+
canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3)
|
334 |
+
cur_canvas = canvas
|
335 |
+
|
336 |
+
cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4]
|
337 |
+
|
338 |
+
return cur_canvas
|
339 |
+
|
340 |
+
|
341 |
+
def read_img(img_path, img_type='RGB', h=None, w=None):
|
342 |
+
img = Image.open(img_path).convert(img_type)
|
343 |
+
if h is not None and w is not None:
|
344 |
+
img = img.resize((w, h), resample=Image.NEAREST)
|
345 |
+
img = np.array(img)
|
346 |
+
if img.ndim == 2:
|
347 |
+
img = np.expand_dims(img, axis=-1)
|
348 |
+
img = img.transpose((2, 0, 1))
|
349 |
+
img = torch.from_numpy(img).unsqueeze(0).float() / 255.
|
350 |
+
return img
|
351 |
+
|
352 |
+
|
353 |
+
def pad(img, H, W):
|
354 |
+
b, c, h, w = img.shape
|
355 |
+
pad_h = (H - h) // 2
|
356 |
+
pad_w = (W - w) // 2
|
357 |
+
remainder_h = (H - h) % 2
|
358 |
+
remainder_w = (W - w) % 2
|
359 |
+
img = torch.cat([torch.zeros((b, c, pad_h, w), device=img.device), img,
|
360 |
+
torch.zeros((b, c, pad_h + remainder_h, w), device=img.device)], dim=-2)
|
361 |
+
img = torch.cat([torch.zeros((b, c, H, pad_w), device=img.device), img,
|
362 |
+
torch.zeros((b, c, H, pad_w + remainder_w), device=img.device)], dim=-1)
|
363 |
+
return img
|
364 |
+
|
365 |
+
|
366 |
+
def crop(img, h, w):
|
367 |
+
H, W = img.shape[-2:]
|
368 |
+
pad_h = (H - h) // 2
|
369 |
+
pad_w = (W - w) // 2
|
370 |
+
remainder_h = (H - h) % 2
|
371 |
+
remainder_w = (W - w) % 2
|
372 |
+
img = img[:, :, pad_h:H - pad_h - remainder_h, pad_w:W - pad_w - remainder_w]
|
373 |
+
return img
|
374 |
+
|
375 |
+
|
376 |
+
def main(input_path, model_path, output_dir, need_animation=False, resize_h=None, resize_w=None, serial=False):
|
377 |
+
if not os.path.exists(output_dir):
|
378 |
+
os.mkdir(output_dir)
|
379 |
+
input_name = os.path.basename(input_path)
|
380 |
+
output_path = os.path.join(output_dir, input_name)
|
381 |
+
frame_dir = None
|
382 |
+
if need_animation:
|
383 |
+
if not serial:
|
384 |
+
print('It must be under serial mode if animation results are required, so serial flag is set to True!')
|
385 |
+
serial = True
|
386 |
+
frame_dir = os.path.join(output_dir, input_name[:input_name.find('.')])
|
387 |
+
if not os.path.exists(frame_dir):
|
388 |
+
os.mkdir(frame_dir)
|
389 |
+
patch_size = 32
|
390 |
+
stroke_num = 8
|
391 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
392 |
+
net_g = network.Painter(5, stroke_num, 256, 8, 3, 3).to(device)
|
393 |
+
net_g.load_state_dict(torch.load(model_path))
|
394 |
+
net_g.eval()
|
395 |
+
for param in net_g.parameters():
|
396 |
+
param.requires_grad = False
|
397 |
+
|
398 |
+
brush_large_vertical = read_img('brush/brush_large_vertical.png', 'L').to(device)
|
399 |
+
brush_large_horizontal = read_img('brush/brush_large_horizontal.png', 'L').to(device)
|
400 |
+
meta_brushes = torch.cat(
|
401 |
+
[brush_large_vertical, brush_large_horizontal], dim=0)
|
402 |
+
|
403 |
+
with torch.no_grad():
|
404 |
+
original_img = read_img(input_path, 'RGB', resize_h, resize_w).to(device)
|
405 |
+
original_h, original_w = original_img.shape[-2:]
|
406 |
+
K = max(math.ceil(math.log2(max(original_h, original_w) / patch_size)), 0)
|
407 |
+
original_img_pad_size = patch_size * (2 ** K)
|
408 |
+
original_img_pad = pad(original_img, original_img_pad_size, original_img_pad_size)
|
409 |
+
final_result = torch.zeros_like(original_img_pad).to(device)
|
410 |
+
for layer in range(0, K + 1):
|
411 |
+
layer_size = patch_size * (2 ** layer)
|
412 |
+
img = F.interpolate(original_img_pad, (layer_size, layer_size))
|
413 |
+
result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
|
414 |
+
img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size))
|
415 |
+
result_patch = F.unfold(result, (patch_size, patch_size),
|
416 |
+
stride=(patch_size, patch_size))
|
417 |
+
# There are patch_num * patch_num patches in total
|
418 |
+
patch_num = (layer_size - patch_size) // patch_size + 1
|
419 |
+
|
420 |
+
# img_patch, result_patch: b, 3 * output_size * output_size, h * w
|
421 |
+
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
|
422 |
+
result_patch = result_patch.permute(0, 2, 1).contiguous().view(
|
423 |
+
-1, 3, patch_size, patch_size).contiguous()
|
424 |
+
shape_param, stroke_decision = net_g(img_patch, result_patch)
|
425 |
+
stroke_decision = network.SignWithSigmoidGrad.apply(stroke_decision)
|
426 |
+
|
427 |
+
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
|
428 |
+
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
|
429 |
+
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
|
430 |
+
color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view(
|
431 |
+
img_patch.shape[0], stroke_num, 3).contiguous()
|
432 |
+
stroke_param = torch.cat([shape_param, color], dim=-1)
|
433 |
+
# stroke_param: b * h * w, stroke_per_patch, param_per_stroke
|
434 |
+
# stroke_decision: b * h * w, stroke_per_patch, 1
|
435 |
+
param = stroke_param.view(1, patch_num, patch_num, stroke_num, 8).contiguous()
|
436 |
+
decision = stroke_decision.view(1, patch_num, patch_num, stroke_num).contiguous().bool()
|
437 |
+
# param: b, h, w, stroke_per_patch, 8
|
438 |
+
# decision: b, h, w, stroke_per_patch
|
439 |
+
param[..., :2] = param[..., :2] / 2 + 0.25
|
440 |
+
param[..., 2:4] = param[..., 2:4] / 2
|
441 |
+
if serial:
|
442 |
+
final_result = param2img_serial(param, decision, meta_brushes, final_result,
|
443 |
+
frame_dir, False, original_h, original_w)
|
444 |
+
else:
|
445 |
+
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
|
446 |
+
|
447 |
+
border_size = original_img_pad_size // (2 * patch_num)
|
448 |
+
img = F.interpolate(original_img_pad, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
|
449 |
+
result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer)))
|
450 |
+
img = F.pad(img, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2,
|
451 |
+
0, 0, 0, 0])
|
452 |
+
result = F.pad(result, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2,
|
453 |
+
0, 0, 0, 0])
|
454 |
+
img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size))
|
455 |
+
result_patch = F.unfold(result, (patch_size, patch_size), stride=(patch_size, patch_size))
|
456 |
+
final_result = F.pad(final_result, [border_size, border_size, border_size, border_size, 0, 0, 0, 0])
|
457 |
+
h = (img.shape[2] - patch_size) // patch_size + 1
|
458 |
+
w = (img.shape[3] - patch_size) // patch_size + 1
|
459 |
+
# img_patch, result_patch: b, 3 * output_size * output_size, h * w
|
460 |
+
img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
|
461 |
+
result_patch = result_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous()
|
462 |
+
shape_param, stroke_decision = net_g(img_patch, result_patch)
|
463 |
+
|
464 |
+
grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous()
|
465 |
+
img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view(
|
466 |
+
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous()
|
467 |
+
color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view(
|
468 |
+
img_patch.shape[0], stroke_num, 3).contiguous()
|
469 |
+
stroke_param = torch.cat([shape_param, color], dim=-1)
|
470 |
+
# stroke_param: b * h * w, stroke_per_patch, param_per_stroke
|
471 |
+
# stroke_decision: b * h * w, stroke_per_patch, 1
|
472 |
+
param = stroke_param.view(1, h, w, stroke_num, 8).contiguous()
|
473 |
+
decision = stroke_decision.view(1, h, w, stroke_num).contiguous().bool()
|
474 |
+
# param: b, h, w, stroke_per_patch, 8
|
475 |
+
# decision: b, h, w, stroke_per_patch
|
476 |
+
param[..., :2] = param[..., :2] / 2 + 0.25
|
477 |
+
param[..., 2:4] = param[..., 2:4] / 2
|
478 |
+
if serial:
|
479 |
+
final_result = param2img_serial(param, decision, meta_brushes, final_result,
|
480 |
+
frame_dir, True, original_h, original_w)
|
481 |
+
else:
|
482 |
+
final_result = param2img_parallel(param, decision, meta_brushes, final_result)
|
483 |
+
final_result = final_result[:, :, border_size:-border_size, border_size:-border_size]
|
484 |
+
|
485 |
+
final_result = crop(final_result, original_h, original_w)
|
486 |
+
save_img(final_result[0], output_path)
|
487 |
+
|
488 |
+
|
489 |
+
if __name__ == '__main__':
|
490 |
+
main(input_path='input/chicago.jpg',
|
491 |
+
model_path='model.pth',
|
492 |
+
output_dir='output/',
|
493 |
+
need_animation=False, # whether need intermediate results for animation.
|
494 |
+
resize_h=None, # resize original input to this size. None means do not resize.
|
495 |
+
resize_w=None, # resize original input to this size. None means do not resize.
|
496 |
+
serial=False) # if need animation, serial must be True.
|
input/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
input/temp.txt
ADDED
File without changes
|
morphology.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class Erosion2d(nn.Module):
|
7 |
+
|
8 |
+
def __init__(self, m=1):
|
9 |
+
super(Erosion2d, self).__init__()
|
10 |
+
self.m = m
|
11 |
+
self.pad = [m, m, m, m]
|
12 |
+
self.unfold = nn.Unfold(2 * m + 1, padding=0, stride=1)
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
batch_size, c, h, w = x.shape
|
16 |
+
x_pad = F.pad(x, pad=self.pad, mode='constant', value=1e9)
|
17 |
+
channel = self.unfold(x_pad).view(batch_size, c, -1, h, w)
|
18 |
+
result = torch.min(channel, dim=2)[0]
|
19 |
+
return result
|
20 |
+
|
21 |
+
|
22 |
+
def erosion(x, m=1):
|
23 |
+
b, c, h, w = x.shape
|
24 |
+
x_pad = F.pad(x, pad=[m, m, m, m], mode='constant', value=1e9)
|
25 |
+
channel = nn.functional.unfold(x_pad, 2 * m + 1, padding=0, stride=1).view(b, c, -1, h, w)
|
26 |
+
result = torch.min(channel, dim=2)[0]
|
27 |
+
return result
|
28 |
+
|
29 |
+
|
30 |
+
class Dilation2d(nn.Module):
|
31 |
+
|
32 |
+
def __init__(self, m=1):
|
33 |
+
super(Dilation2d, self).__init__()
|
34 |
+
self.m = m
|
35 |
+
self.pad = [m, m, m, m]
|
36 |
+
self.unfold = nn.Unfold(2 * m + 1, padding=0, stride=1)
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
batch_size, c, h, w = x.shape
|
40 |
+
x_pad = F.pad(x, pad=self.pad, mode='constant', value=-1e9)
|
41 |
+
channel = self.unfold(x_pad).view(batch_size, c, -1, h, w)
|
42 |
+
result = torch.max(channel, dim=2)[0]
|
43 |
+
return result
|
44 |
+
|
45 |
+
|
46 |
+
def dilation(x, m=1):
|
47 |
+
b, c, h, w = x.shape
|
48 |
+
x_pad = F.pad(x, pad=[m, m, m, m], mode='constant', value=-1e9)
|
49 |
+
channel = nn.functional.unfold(x_pad, 2 * m + 1, padding=0, stride=1).view(b, c, -1, h, w)
|
50 |
+
result = torch.max(channel, dim=2)[0]
|
51 |
+
return result
|
network.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class SignWithSigmoidGrad(torch.autograd.Function):
|
6 |
+
|
7 |
+
@staticmethod
|
8 |
+
def forward(ctx, x):
|
9 |
+
result = (x > 0).float()
|
10 |
+
sigmoid_result = torch.sigmoid(x)
|
11 |
+
ctx.save_for_backward(sigmoid_result)
|
12 |
+
return result
|
13 |
+
|
14 |
+
@staticmethod
|
15 |
+
def backward(ctx, grad_result):
|
16 |
+
(sigmoid_result,) = ctx.saved_tensors
|
17 |
+
if ctx.needs_input_grad[0]:
|
18 |
+
grad_input = grad_result * sigmoid_result * (1 - sigmoid_result)
|
19 |
+
else:
|
20 |
+
grad_input = None
|
21 |
+
return grad_input
|
22 |
+
|
23 |
+
|
24 |
+
class Painter(nn.Module):
|
25 |
+
|
26 |
+
def __init__(self, param_per_stroke, total_strokes, hidden_dim, n_heads=8, n_enc_layers=3, n_dec_layers=3):
|
27 |
+
super().__init__()
|
28 |
+
self.enc_img = nn.Sequential(
|
29 |
+
nn.ReflectionPad2d(1),
|
30 |
+
nn.Conv2d(3, 32, 3, 1),
|
31 |
+
nn.BatchNorm2d(32),
|
32 |
+
nn.ReLU(True),
|
33 |
+
nn.ReflectionPad2d(1),
|
34 |
+
nn.Conv2d(32, 64, 3, 2),
|
35 |
+
nn.BatchNorm2d(64),
|
36 |
+
nn.ReLU(True),
|
37 |
+
nn.ReflectionPad2d(1),
|
38 |
+
nn.Conv2d(64, 128, 3, 2),
|
39 |
+
nn.BatchNorm2d(128),
|
40 |
+
nn.ReLU(True))
|
41 |
+
self.enc_canvas = nn.Sequential(
|
42 |
+
nn.ReflectionPad2d(1),
|
43 |
+
nn.Conv2d(3, 32, 3, 1),
|
44 |
+
nn.BatchNorm2d(32),
|
45 |
+
nn.ReLU(True),
|
46 |
+
nn.ReflectionPad2d(1),
|
47 |
+
nn.Conv2d(32, 64, 3, 2),
|
48 |
+
nn.BatchNorm2d(64),
|
49 |
+
nn.ReLU(True),
|
50 |
+
nn.ReflectionPad2d(1),
|
51 |
+
nn.Conv2d(64, 128, 3, 2),
|
52 |
+
nn.BatchNorm2d(128),
|
53 |
+
nn.ReLU(True))
|
54 |
+
self.conv = nn.Conv2d(128 * 2, hidden_dim, 1)
|
55 |
+
self.transformer = nn.Transformer(hidden_dim, n_heads, n_enc_layers, n_dec_layers)
|
56 |
+
self.linear_param = nn.Sequential(
|
57 |
+
nn.Linear(hidden_dim, hidden_dim),
|
58 |
+
nn.ReLU(True),
|
59 |
+
nn.Linear(hidden_dim, hidden_dim),
|
60 |
+
nn.ReLU(True),
|
61 |
+
nn.Linear(hidden_dim, param_per_stroke))
|
62 |
+
self.linear_decider = nn.Linear(hidden_dim, 1)
|
63 |
+
self.query_pos = nn.Parameter(torch.rand(total_strokes, hidden_dim))
|
64 |
+
self.row_embed = nn.Parameter(torch.rand(8, hidden_dim // 2))
|
65 |
+
self.col_embed = nn.Parameter(torch.rand(8, hidden_dim // 2))
|
66 |
+
|
67 |
+
def forward(self, img, canvas):
|
68 |
+
b, _, H, W = img.shape
|
69 |
+
img_feat = self.enc_img(img)
|
70 |
+
canvas_feat = self.enc_canvas(canvas)
|
71 |
+
h, w = img_feat.shape[-2:]
|
72 |
+
feat = torch.cat([img_feat, canvas_feat], dim=1)
|
73 |
+
feat_conv = self.conv(feat)
|
74 |
+
|
75 |
+
pos_embed = torch.cat([
|
76 |
+
self.col_embed[:w].unsqueeze(0).contiguous().repeat(h, 1, 1),
|
77 |
+
self.row_embed[:h].unsqueeze(1).contiguous().repeat(1, w, 1),
|
78 |
+
], dim=-1).flatten(0, 1).unsqueeze(1)
|
79 |
+
hidden_state = self.transformer(pos_embed + feat_conv.flatten(2).permute(2, 0, 1).contiguous(),
|
80 |
+
self.query_pos.unsqueeze(1).contiguous().repeat(1, b, 1))
|
81 |
+
hidden_state = hidden_state.permute(1, 0, 2).contiguous()
|
82 |
+
param = self.linear_param(hidden_state)
|
83 |
+
decision = self.linear_decider(hidden_state)
|
84 |
+
return param, decision
|