import os import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt from tensorflow import keras import requests import PIL import io import matplotlib.pyplot as plt from keras_cv_attention_models import convnext import gradio as gr mm = convnext.ConvNeXtBase() def inference(img): img = img imm = keras.applications.imagenet_utils.preprocess_input(img, mode='torch') image_input = tf.expand_dims(tf.image.resize(imm, mm.input_shape[1:3]), 0) pred = mm(image_input) pred_np = pred.numpy() pred_names = keras.applications.imagenet_utils.decode_predictions(pred.numpy())[0] result = {} for i in range(5): result[pred_names[i][1]] = pred_names[i][2].item() return result inputs = gr.inputs.Image(type='numpy') outputs = gr.outputs.Label(type="confidences",num_top_classes=5) title = "ConvNeXt" description = "Gradio demo for ConvNeXt. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "
MobileNetV2: Inverted Residuals and Linear Bottlenecks | Github Repo | pretrained ConvNeXt model from keras_cv_attention_models | examples usage from adversaries_to_convnext
" examples = ['Tortoise-on-ground-surrounded-by-plants.jpeg'] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False, examples=examples).launch(enable_queue=True)