Spaces:
Runtime error
Runtime error
File size: 6,443 Bytes
ce3d5f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from PIL import Image
import gradio as gr
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoImageProcessor,
AutoModel,
)
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation import (
LogitsProcessorList,
PrefixConstrainedLogitsProcessor,
UnbatchedClassifierFreeGuidanceLogitsProcessor,
)
import torch
from emu3.mllm.processing_emu3 import Emu3Processor
# Model paths
EMU_GEN_HUB = "BAAI/Emu3-Gen"
EMU_CHAT_HUB = "BAAI/Emu3-Chat"
VQ_HUB = "BAAI/Emu3-VisionTokenizer"
# Prepare models and processors
# Emu3-Gen model and processor
gen_model = AutoModelForCausalLM.from_pretrained(
EMU_GEN_HUB,
device_map="cuda:0",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
trust_remote_code=True,
)
gen_tokenizer = AutoTokenizer.from_pretrained(EMU_GEN_HUB, trust_remote_code=True)
gen_image_processor = AutoImageProcessor.from_pretrained(
VQ_HUB, trust_remote_code=True
)
gen_image_tokenizer = AutoModel.from_pretrained(
VQ_HUB, device_map="cuda:0", trust_remote_code=True
).eval()
gen_processor = Emu3Processor(gen_image_processor, gen_image_tokenizer, gen_tokenizer)
# Emu3-Chat model and processor
chat_model = AutoModelForCausalLM.from_pretrained(
EMU_CHAT_HUB,
device_map="cuda:0",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
trust_remote_code=True,
)
chat_tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True)
chat_image_processor = AutoImageProcessor.from_pretrained(
VQ_HUB, trust_remote_code=True
)
chat_image_tokenizer = AutoModel.from_pretrained(
VQ_HUB, device_map="cuda:0", trust_remote_code=True
).eval()
chat_processor = Emu3Processor(
chat_image_processor, chat_image_tokenizer, chat_tokenizer
)
def generate_image(prompt):
POSITIVE_PROMPT = " masterpiece, film grained, best quality."
NEGATIVE_PROMPT = (
"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, "
"fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, "
"signature, watermark, username, blurry."
)
classifier_free_guidance = 3.0
full_prompt = prompt + POSITIVE_PROMPT
kwargs = dict(
mode="G",
ratio="1:1",
image_area=gen_model.config.image_area,
return_tensors="pt",
)
pos_inputs = gen_processor(text=full_prompt, **kwargs)
neg_inputs = gen_processor(text=NEGATIVE_PROMPT, **kwargs)
# Prepare hyperparameters
GENERATION_CONFIG = GenerationConfig(
use_cache=True,
eos_token_id=gen_model.config.eos_token_id,
pad_token_id=gen_model.config.pad_token_id,
max_new_tokens=40960,
do_sample=True,
top_k=2048,
)
h, w = pos_inputs.image_size[0]
constrained_fn = gen_processor.build_prefix_constrained_fn(h, w)
logits_processor = LogitsProcessorList(
[
UnbatchedClassifierFreeGuidanceLogitsProcessor(
classifier_free_guidance,
gen_model,
unconditional_ids=neg_inputs.input_ids.to("cuda:0"),
),
PrefixConstrainedLogitsProcessor(
constrained_fn,
num_beams=1,
),
]
)
# Generate
outputs = gen_model.generate(
pos_inputs.input_ids.to("cuda:0"),
generation_config=GENERATION_CONFIG,
logits_processor=logits_processor,
)
mm_list = gen_processor.decode(outputs[0])
for idx, im in enumerate(mm_list):
if isinstance(im, Image.Image):
return im
return None
def vision_language_understanding(image, text):
inputs = chat_processor(
text=text,
image=image,
mode="U",
padding_side="left",
padding="longest",
return_tensors="pt",
)
# Prepare hyperparameters
GENERATION_CONFIG = GenerationConfig(
pad_token_id=chat_tokenizer.pad_token_id,
bos_token_id=chat_tokenizer.bos_token_id,
eos_token_id=chat_tokenizer.eos_token_id,
max_new_tokens=320,
)
# Generate
outputs = chat_model.generate(
inputs.input_ids.to("cuda:0"),
generation_config=GENERATION_CONFIG,
max_new_tokens=320,
)
outputs = outputs[:, inputs.input_ids.shape[-1] :]
response = chat_processor.batch_decode(outputs, skip_special_tokens=True)[0]
return response
def chat(history, user_input, user_image):
if user_image is not None:
# Use Emu3-Chat for vision-language understanding
response = vision_language_understanding(user_image, user_input)
# Append the user input and response to the history
history = history + [(user_input, response)]
else:
# Use Emu3-Gen for image generation
generated_image = generate_image(user_input)
if generated_image is not None:
# Append the user input and generated image to the history
history = history + [(user_input, generated_image)]
else:
# If image generation failed, respond with an error message
history = history + [
(user_input, "Sorry, I could not generate an image.")
]
return history, history, gr.update(value=None)
def clear_input():
return gr.update(value="")
with gr.Blocks() as demo:
gr.Markdown("# Emu3 Chatbot Demo")
gr.Markdown(
"This is a chatbot demo for image generation and vision-language understanding using Emu3 models."
)
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
with gr.Column(scale=0.85):
user_input = gr.Textbox(
show_label=False, placeholder="Type your message here...", lines=2
).style(container=False)
with gr.Column(scale=0.15, min_width=0):
submit_btn = gr.Button("Send")
user_image = gr.Image(
source="upload", type="pil", label="Upload an image (optional)"
)
submit_btn.click(
chat,
inputs=[state, user_input, user_image],
outputs=[chatbot, state, user_image],
).then(fn=clear_input, inputs=[], outputs=user_input)
user_input.submit(
chat,
inputs=[state, user_input, user_image],
outputs=[chatbot, state, user_image],
).then(fn=clear_input, inputs=[], outputs=user_input)
demo.launch()
|