lama / bin /analyze_errors.py
AK391
files
d380b77
raw
history blame
17.7 kB
#!/usr/bin/env python3
import cv2
import numpy as np
import sklearn
import torch
import os
import pickle
import pandas as pd
import matplotlib.pyplot as plt
from joblib import Parallel, delayed
from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset, load_image
from saicinpainting.evaluation.losses.fid.inception import InceptionV3
from saicinpainting.evaluation.utils import load_yaml
from saicinpainting.training.visualizers.base import visualize_mask_and_images
def draw_score(img, score):
img = np.transpose(img, (1, 2, 0))
cv2.putText(img, f'{score:.2f}',
(40, 40),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 1, 0),
thickness=3)
img = np.transpose(img, (2, 0, 1))
return img
def save_global_samples(global_mask_fnames, mask2real_fname, mask2fake_fname, out_dir, real_scores_by_fname, fake_scores_by_fname):
for cur_mask_fname in global_mask_fnames:
cur_real_fname = mask2real_fname[cur_mask_fname]
orig_img = load_image(cur_real_fname, mode='RGB')
fake_img = load_image(mask2fake_fname[cur_mask_fname], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]]
mask = load_image(cur_mask_fname, mode='L')[None, ...]
draw_score(orig_img, real_scores_by_fname.loc[cur_real_fname, 'real_score'])
draw_score(fake_img, fake_scores_by_fname.loc[cur_mask_fname, 'fake_score'])
cur_grid = visualize_mask_and_images(dict(image=orig_img, mask=mask, fake=fake_img),
keys=['image', 'fake'],
last_without_mask=True)
cur_grid = np.clip(cur_grid * 255, 0, 255).astype('uint8')
cur_grid = cv2.cvtColor(cur_grid, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(out_dir, os.path.splitext(os.path.basename(cur_mask_fname))[0] + '.jpg'),
cur_grid)
def save_samples_by_real(worst_best_by_real, mask2fake_fname, fake_info, out_dir):
for real_fname in worst_best_by_real.index:
worst_mask_path = worst_best_by_real.loc[real_fname, 'worst']
best_mask_path = worst_best_by_real.loc[real_fname, 'best']
orig_img = load_image(real_fname, mode='RGB')
worst_mask_img = load_image(worst_mask_path, mode='L')[None, ...]
worst_fake_img = load_image(mask2fake_fname[worst_mask_path], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]]
best_mask_img = load_image(best_mask_path, mode='L')[None, ...]
best_fake_img = load_image(mask2fake_fname[best_mask_path], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]]
draw_score(orig_img, worst_best_by_real.loc[real_fname, 'real_score'])
draw_score(worst_fake_img, worst_best_by_real.loc[real_fname, 'worst_score'])
draw_score(best_fake_img, worst_best_by_real.loc[real_fname, 'best_score'])
cur_grid = visualize_mask_and_images(dict(image=orig_img, mask=np.zeros_like(worst_mask_img),
worst_mask=worst_mask_img, worst_img=worst_fake_img,
best_mask=best_mask_img, best_img=best_fake_img),
keys=['image', 'worst_mask', 'worst_img', 'best_mask', 'best_img'],
rescale_keys=['worst_mask', 'best_mask'],
last_without_mask=True)
cur_grid = np.clip(cur_grid * 255, 0, 255).astype('uint8')
cur_grid = cv2.cvtColor(cur_grid, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(out_dir,
os.path.splitext(os.path.basename(real_fname))[0] + '.jpg'),
cur_grid)
fig, (ax1, ax2) = plt.subplots(1, 2)
cur_stat = fake_info[fake_info['real_fname'] == real_fname]
cur_stat['fake_score'].hist(ax=ax1)
cur_stat['real_score'].hist(ax=ax2)
fig.tight_layout()
fig.savefig(os.path.join(out_dir,
os.path.splitext(os.path.basename(real_fname))[0] + '_scores.png'))
plt.close(fig)
def extract_overlapping_masks(mask_fnames, cur_i, fake_scores_table, max_overlaps_n=2):
result_pairs = []
result_scores = []
mask_fname_a = mask_fnames[cur_i]
mask_a = load_image(mask_fname_a, mode='L')[None, ...] > 0.5
cur_score_a = fake_scores_table.loc[mask_fname_a, 'fake_score']
for mask_fname_b in mask_fnames[cur_i + 1:]:
mask_b = load_image(mask_fname_b, mode='L')[None, ...] > 0.5
if not np.any(mask_a & mask_b):
continue
cur_score_b = fake_scores_table.loc[mask_fname_b, 'fake_score']
result_pairs.append((mask_fname_a, mask_fname_b))
result_scores.append(cur_score_b - cur_score_a)
if len(result_pairs) >= max_overlaps_n:
break
return result_pairs, result_scores
def main(args):
config = load_yaml(args.config)
latents_dir = os.path.join(args.outpath, 'latents')
os.makedirs(latents_dir, exist_ok=True)
global_worst_dir = os.path.join(args.outpath, 'global_worst')
os.makedirs(global_worst_dir, exist_ok=True)
global_best_dir = os.path.join(args.outpath, 'global_best')
os.makedirs(global_best_dir, exist_ok=True)
worst_best_by_best_worst_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'best_worst_score_diff_max')
os.makedirs(worst_best_by_best_worst_score_diff_max_dir, exist_ok=True)
worst_best_by_best_worst_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'best_worst_score_diff_min')
os.makedirs(worst_best_by_best_worst_score_diff_min_dir, exist_ok=True)
worst_best_by_real_best_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_best_score_diff_max')
os.makedirs(worst_best_by_real_best_score_diff_max_dir, exist_ok=True)
worst_best_by_real_best_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_best_score_diff_min')
os.makedirs(worst_best_by_real_best_score_diff_min_dir, exist_ok=True)
worst_best_by_real_worst_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_worst_score_diff_max')
os.makedirs(worst_best_by_real_worst_score_diff_max_dir, exist_ok=True)
worst_best_by_real_worst_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_worst_score_diff_min')
os.makedirs(worst_best_by_real_worst_score_diff_min_dir, exist_ok=True)
if not args.only_report:
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
inception_model = InceptionV3([block_idx]).eval().cuda()
dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs)
real2vector_cache = {}
real_features = []
fake_features = []
orig_fnames = []
mask_fnames = []
mask2real_fname = {}
mask2fake_fname = {}
for batch_i, batch in enumerate(dataset):
orig_img_fname = dataset.img_filenames[batch_i]
mask_fname = dataset.mask_filenames[batch_i]
fake_fname = dataset.pred_filenames[batch_i]
mask2real_fname[mask_fname] = orig_img_fname
mask2fake_fname[mask_fname] = fake_fname
cur_real_vector = real2vector_cache.get(orig_img_fname, None)
if cur_real_vector is None:
with torch.no_grad():
in_img = torch.from_numpy(batch['image'][None, ...]).cuda()
cur_real_vector = inception_model(in_img)[0].squeeze(-1).squeeze(-1).cpu().numpy()
real2vector_cache[orig_img_fname] = cur_real_vector
pred_img = torch.from_numpy(batch['inpainted'][None, ...]).cuda()
cur_fake_vector = inception_model(pred_img)[0].squeeze(-1).squeeze(-1).cpu().numpy()
real_features.append(cur_real_vector)
fake_features.append(cur_fake_vector)
orig_fnames.append(orig_img_fname)
mask_fnames.append(mask_fname)
ids_features = np.concatenate(real_features + fake_features, axis=0)
ids_labels = np.array(([1] * len(real_features)) + ([0] * len(fake_features)))
with open(os.path.join(latents_dir, 'featues.pkl'), 'wb') as f:
pickle.dump(ids_features, f, protocol=3)
with open(os.path.join(latents_dir, 'labels.pkl'), 'wb') as f:
pickle.dump(ids_labels, f, protocol=3)
with open(os.path.join(latents_dir, 'orig_fnames.pkl'), 'wb') as f:
pickle.dump(orig_fnames, f, protocol=3)
with open(os.path.join(latents_dir, 'mask_fnames.pkl'), 'wb') as f:
pickle.dump(mask_fnames, f, protocol=3)
with open(os.path.join(latents_dir, 'mask2real_fname.pkl'), 'wb') as f:
pickle.dump(mask2real_fname, f, protocol=3)
with open(os.path.join(latents_dir, 'mask2fake_fname.pkl'), 'wb') as f:
pickle.dump(mask2fake_fname, f, protocol=3)
svm = sklearn.svm.LinearSVC(dual=False)
svm.fit(ids_features, ids_labels)
pred_scores = svm.decision_function(ids_features)
real_scores = pred_scores[:len(real_features)]
fake_scores = pred_scores[len(real_features):]
with open(os.path.join(latents_dir, 'pred_scores.pkl'), 'wb') as f:
pickle.dump(pred_scores, f, protocol=3)
with open(os.path.join(latents_dir, 'real_scores.pkl'), 'wb') as f:
pickle.dump(real_scores, f, protocol=3)
with open(os.path.join(latents_dir, 'fake_scores.pkl'), 'wb') as f:
pickle.dump(fake_scores, f, protocol=3)
else:
with open(os.path.join(latents_dir, 'orig_fnames.pkl'), 'rb') as f:
orig_fnames = pickle.load(f)
with open(os.path.join(latents_dir, 'mask_fnames.pkl'), 'rb') as f:
mask_fnames = pickle.load(f)
with open(os.path.join(latents_dir, 'mask2real_fname.pkl'), 'rb') as f:
mask2real_fname = pickle.load(f)
with open(os.path.join(latents_dir, 'mask2fake_fname.pkl'), 'rb') as f:
mask2fake_fname = pickle.load(f)
with open(os.path.join(latents_dir, 'real_scores.pkl'), 'rb') as f:
real_scores = pickle.load(f)
with open(os.path.join(latents_dir, 'fake_scores.pkl'), 'rb') as f:
fake_scores = pickle.load(f)
real_info = pd.DataFrame(data=[dict(real_fname=fname,
real_score=score)
for fname, score
in zip(orig_fnames, real_scores)])
real_info.set_index('real_fname', drop=True, inplace=True)
fake_info = pd.DataFrame(data=[dict(mask_fname=fname,
fake_fname=mask2fake_fname[fname],
real_fname=mask2real_fname[fname],
fake_score=score)
for fname, score
in zip(mask_fnames, fake_scores)])
fake_info = fake_info.join(real_info, on='real_fname', how='left')
fake_info.drop_duplicates(['fake_fname', 'real_fname'], inplace=True)
fake_stats_by_real = fake_info.groupby('real_fname')['fake_score'].describe()[['mean', 'std']].rename(
{'mean': 'mean_fake_by_real', 'std': 'std_fake_by_real'}, axis=1)
fake_info = fake_info.join(fake_stats_by_real, on='real_fname', rsuffix='stat_by_real')
fake_info.drop_duplicates(['fake_fname', 'real_fname'], inplace=True)
fake_info.to_csv(os.path.join(latents_dir, 'join_scores_table.csv'), sep='\t', index=False)
fake_scores_table = fake_info.set_index('mask_fname')['fake_score'].to_frame()
real_scores_table = fake_info.set_index('real_fname')['real_score'].drop_duplicates().to_frame()
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.hist(fake_scores)
ax2.hist(real_scores)
fig.tight_layout()
fig.savefig(os.path.join(args.outpath, 'global_scores_hist.png'))
plt.close(fig)
global_worst_masks = fake_info.sort_values('fake_score', ascending=True)['mask_fname'].iloc[:config.take_global_top].to_list()
global_best_masks = fake_info.sort_values('fake_score', ascending=False)['mask_fname'].iloc[:config.take_global_top].to_list()
save_global_samples(global_worst_masks, mask2real_fname, mask2fake_fname, global_worst_dir, real_scores_table, fake_scores_table)
save_global_samples(global_best_masks, mask2real_fname, mask2fake_fname, global_best_dir, real_scores_table, fake_scores_table)
# grouped by real
worst_samples_by_real = fake_info.groupby('real_fname').apply(
lambda d: d.set_index('mask_fname')['fake_score'].idxmin()).to_frame().rename({0: 'worst'}, axis=1)
best_samples_by_real = fake_info.groupby('real_fname').apply(
lambda d: d.set_index('mask_fname')['fake_score'].idxmax()).to_frame().rename({0: 'best'}, axis=1)
worst_best_by_real = pd.concat([worst_samples_by_real, best_samples_by_real], axis=1)
worst_best_by_real = worst_best_by_real.join(fake_scores_table.rename({'fake_score': 'worst_score'}, axis=1),
on='worst')
worst_best_by_real = worst_best_by_real.join(fake_scores_table.rename({'fake_score': 'best_score'}, axis=1),
on='best')
worst_best_by_real = worst_best_by_real.join(real_scores_table)
worst_best_by_real['best_worst_score_diff'] = worst_best_by_real['best_score'] - worst_best_by_real['worst_score']
worst_best_by_real['real_best_score_diff'] = worst_best_by_real['real_score'] - worst_best_by_real['best_score']
worst_best_by_real['real_worst_score_diff'] = worst_best_by_real['real_score'] - worst_best_by_real['worst_score']
worst_best_by_best_worst_score_diff_min = worst_best_by_real.sort_values('best_worst_score_diff', ascending=True).iloc[:config.take_worst_best_top]
worst_best_by_best_worst_score_diff_max = worst_best_by_real.sort_values('best_worst_score_diff', ascending=False).iloc[:config.take_worst_best_top]
save_samples_by_real(worst_best_by_best_worst_score_diff_min, mask2fake_fname, fake_info, worst_best_by_best_worst_score_diff_min_dir)
save_samples_by_real(worst_best_by_best_worst_score_diff_max, mask2fake_fname, fake_info, worst_best_by_best_worst_score_diff_max_dir)
worst_best_by_real_best_score_diff_min = worst_best_by_real.sort_values('real_best_score_diff', ascending=True).iloc[:config.take_worst_best_top]
worst_best_by_real_best_score_diff_max = worst_best_by_real.sort_values('real_best_score_diff', ascending=False).iloc[:config.take_worst_best_top]
save_samples_by_real(worst_best_by_real_best_score_diff_min, mask2fake_fname, fake_info, worst_best_by_real_best_score_diff_min_dir)
save_samples_by_real(worst_best_by_real_best_score_diff_max, mask2fake_fname, fake_info, worst_best_by_real_best_score_diff_max_dir)
worst_best_by_real_worst_score_diff_min = worst_best_by_real.sort_values('real_worst_score_diff', ascending=True).iloc[:config.take_worst_best_top]
worst_best_by_real_worst_score_diff_max = worst_best_by_real.sort_values('real_worst_score_diff', ascending=False).iloc[:config.take_worst_best_top]
save_samples_by_real(worst_best_by_real_worst_score_diff_min, mask2fake_fname, fake_info, worst_best_by_real_worst_score_diff_min_dir)
save_samples_by_real(worst_best_by_real_worst_score_diff_max, mask2fake_fname, fake_info, worst_best_by_real_worst_score_diff_max_dir)
# analyze what change of mask causes bigger change of score
overlapping_mask_fname_pairs = []
overlapping_mask_fname_score_diffs = []
for cur_real_fname in orig_fnames:
cur_fakes_info = fake_info[fake_info['real_fname'] == cur_real_fname]
cur_mask_fnames = sorted(cur_fakes_info['mask_fname'].unique())
cur_mask_pairs_and_scores = Parallel(args.n_jobs)(
delayed(extract_overlapping_masks)(cur_mask_fnames, i, fake_scores_table)
for i in range(len(cur_mask_fnames) - 1)
)
for cur_pairs, cur_scores in cur_mask_pairs_and_scores:
overlapping_mask_fname_pairs.extend(cur_pairs)
overlapping_mask_fname_score_diffs.extend(cur_scores)
overlapping_mask_fname_pairs = np.asarray(overlapping_mask_fname_pairs)
overlapping_mask_fname_score_diffs = np.asarray(overlapping_mask_fname_score_diffs)
overlapping_sort_idx = np.argsort(overlapping_mask_fname_score_diffs)
overlapping_mask_fname_pairs = overlapping_mask_fname_pairs[overlapping_sort_idx]
overlapping_mask_fname_score_diffs = overlapping_mask_fname_score_diffs[overlapping_sort_idx]
if __name__ == '__main__':
import argparse
aparser = argparse.ArgumentParser()
aparser.add_argument('config', type=str, help='Path to config for dataset generation')
aparser.add_argument('datadir', type=str,
help='Path to folder with images and masks (output of gen_mask_dataset.py)')
aparser.add_argument('predictdir', type=str,
help='Path to folder with predicts (e.g. predict_hifill_baseline.py)')
aparser.add_argument('outpath', type=str, help='Where to put results')
aparser.add_argument('--only-report', action='store_true',
help='Whether to skip prediction and feature extraction, '
'load all the possible latents and proceed with report only')
aparser.add_argument('--n-jobs', type=int, default=8, help='how many processes to use for pair mask mining')
main(aparser.parse_args())