import os os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt") import cv2 import paddlehub as hub import gradio as gr import torch from PIL import Image, ImageOps import numpy as np os.mkdir("data") os.rename("best.ckpt", "models/best.ckpt") os.mkdir("dataout") model = hub.Module(name='U2Net') def infer(img,option): print(type(img)) print(type(img["image"])) print(type(img["mask"])) img = Image.fromarray(img["image"]) mask = Image.fromarray(img["mask"]) img = ImageOps.contain(img, (700,700)) width, height = img.size img.save("./data/data.png") if option == "automatic (U2net)": result = model.Segmentation( images=[cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)], paths=None, batch_size=1, input_size=320, output_dir='output', visualization=True) im = Image.fromarray(result[0]['mask']) else: mask = mask.resize((width,height)) mask.save("./data/data_mask.png") os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu') return "./dataout/data_mask.png",mask inputs = [gr.Image(source="upload",tool="sketch", label="Input",type="numpy"),gr.inputs.Radio(choices=["automatic (U2net)","manual"], type="value", default="manual", label="Masking option")] outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="pil",label="Mask")] title = "LaMa Image Inpainting" description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net" article = "

Resolution-robust Large Mask Inpainting with Fourier Convolutions | Github Repo

" examples = [ ['person512.png',"automatic (U2net)"], ['person512.png',"manual"] ] gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples,cache_examples=False).launch()