akhaliq's picture
akhaliq HF staff
Update app.py
7049daf verified
raw
history blame
7.51 kB
import gradio as gr
import numpy as np
import io
from pydub import AudioSegment
import tempfile
import openai
import time
from dataclasses import dataclass, field
from threading import Lock
import base64
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
conversation: list = field(default_factory=list)
client: openai.OpenAI = None
output_format: str = "mp3"
stopped: bool = False
# Global lock for thread safety
state_lock = Lock()
def create_client(api_key):
return openai.OpenAI(
base_url="https://llama3-1-8b.lepton.run/api/v1/",
api_key=api_key
)
def determine_pause(audio, sampling_rate, state):
# Take the last 1 second of audio
pause_length = int(sampling_rate * 1) # 1 second
if len(audio) < pause_length:
return False
last_audio = audio[-pause_length:]
amplitude = np.abs(last_audio)
# Calculate the average amplitude in the last 1 second
avg_amplitude = np.mean(amplitude)
silence_threshold = 0.01 # Adjust this threshold as needed
if avg_amplitude < silence_threshold:
return True
else:
return False
def process_audio(audio: tuple, state: AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
state.pause_detected = pause_detected
if state.pause_detected:
# Stop recording
return gr.update(recording=False), state
else:
return None, state
def update_or_append_conversation(conversation, id, role, content):
# Find if there's an existing message with the given id
for message in conversation:
if message.get("id") == id and message.get("role") == role:
message["content"] = content
return
# If not found, append a new message
conversation.append({"id": id, "role": role, "content": content})
def generate_response_and_audio(audio_bytes: bytes, state: AppState):
if state.client is None:
raise gr.Error("Please enter a valid API key first.")
format_ = state.output_format
bitrate = 128 if format_ == "mp3" else 32 # Higher bitrate for MP3, lower for OPUS
audio_data = base64.b64encode(audio_bytes).decode()
try:
stream = state.client.chat.completions.create(
extra_body={
"require_audio": True,
"tts_preset_id": "jessica",
"tts_audio_format": format_,
"tts_audio_bitrate": bitrate
},
model="llama3.1-8b",
messages=state.conversation + [{"role": "user", "content": [{"type": "audio", "data": audio_data}]}],
temperature=0.7,
max_tokens=256,
stream=True,
)
id = str(time.time())
full_response = ""
asr_result = ""
audio_bytes_accumulated = b''
for chunk in stream:
if not chunk.choices:
continue
delta = chunk.choices[0].delta
content = delta.get("content", "")
audio = getattr(chunk.choices[0], "audio", [])
asr_results = getattr(chunk.choices[0], "asr_results", [])
if asr_results:
asr_result += "".join(asr_results)
yield id, None, asr_result, None, state
if content:
full_response += content
yield id, full_response, None, None, state
if audio:
# Accumulate audio bytes and yield them
audio_bytes_accumulated += b''.join([base64.b64decode(a) for a in audio])
yield id, None, None, audio_bytes_accumulated, state
yield id, full_response, asr_result, audio_bytes_accumulated, state
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
def response(state: AppState):
if not state.pause_detected:
return gr.update(), gr.update(), state
if state.stream is None or len(state.stream) == 0:
return gr.update(), gr.update(), state
audio_buffer = io.BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
generator = generate_response_and_audio(audio_buffer.getvalue(), state)
for id, text, asr, audio, updated_state in generator:
state = updated_state
if asr:
update_or_append_conversation(state.conversation, id, "user", asr)
if text:
update_or_append_conversation(state.conversation, id, "assistant", text)
chatbot_output = state.conversation
yield chatbot_output, audio, state
# Reset the audio stream for the next interaction
state.stream = None
state.pause_detected = False
def maybe_call_response(state):
if state.pause_detected:
return response(state)
else:
# Do nothing
return gr.update(), gr.update(), state
def start_recording_user(state: AppState):
if not state.stopped:
return gr.update(recording=True)
else:
return gr.update(recording=False)
def set_api_key(api_key, state):
if not api_key:
raise gr.Error("Please enter a valid API key.")
state.client = create_client(api_key)
return "API key set successfully!", state
def update_format(format, state):
state.output_format = format
return state
with gr.Blocks() as demo:
with gr.Row():
api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key")
set_key_button = gr.Button("Set API Key")
api_key_status = gr.Textbox(label="API Key Status", interactive=False)
with gr.Row():
format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format")
with gr.Row():
with gr.Column():
input_audio = gr.Audio(label="Input Audio", source="microphone", type="numpy")
with gr.Column():
chatbot = gr.Chatbot(label="Conversation", type="messages")
output_audio = gr.Audio(label="Output Audio", autoplay=True)
state = gr.State(AppState())
set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state])
format_dropdown.change(update_format, inputs=[format_dropdown, state], outputs=[state])
stream = input_audio.stream(
process_audio,
[input_audio, state],
[input_audio, state],
stream_every=0.25, # Reduced to make it more responsive
time_limit=60, # Increased to allow for longer messages
)
stream.then(
maybe_call_response,
inputs=[state],
outputs=[chatbot, output_audio, state],
)
# Automatically restart recording after the assistant's response
restart = output_audio.change(
start_recording_user,
[state],
[input_audio]
)
# Add a "Stop Conversation" button
cancel = gr.Button("Stop Conversation", variant="stop")
cancel.click(lambda: (AppState(stopped=True), gr.update(recording=False)), None,
[state, input_audio], cancels=[stream, restart])
demo.launch(queue=True)