import gradio as gr import numpy as np import io from pydub import AudioSegment import tempfile import openai import time from dataclasses import dataclass, field from threading import Lock import base64 @dataclass class AppState: stream: np.ndarray | None = None sampling_rate: int = 0 pause_detected: bool = False conversation: list = field(default_factory=list) client: openai.OpenAI = None output_format: str = "mp3" stopped: bool = False # Global lock for thread safety state_lock = Lock() def create_client(api_key): return openai.OpenAI( base_url="https://llama3-1-8b.lepton.run/api/v1/", api_key=api_key ) def determine_pause(audio, sampling_rate, state): # Take the last 1 second of audio pause_length = int(sampling_rate * 1) # 1 second if len(audio) < pause_length: return False last_audio = audio[-pause_length:] amplitude = np.abs(last_audio) # Calculate the average amplitude in the last 1 second avg_amplitude = np.mean(amplitude) silence_threshold = 0.01 # Adjust this threshold as needed if avg_amplitude < silence_threshold: return True else: return False def process_audio(audio: tuple, state: AppState): if state.stream is None: state.stream = audio[1] state.sampling_rate = audio[0] else: state.stream = np.concatenate((state.stream, audio[1])) pause_detected = determine_pause(state.stream, state.sampling_rate, state) state.pause_detected = pause_detected if state.pause_detected: return gr.update(recording=False), state else: return None, state def generate_response_and_audio(audio_bytes: bytes, state: AppState): if state.client is None: raise gr.Error("Please enter a valid API key first.") format_ = state.output_format bitrate = 128 if format_ == "mp3" else 32 # Higher bitrate for MP3, lower for OPUS audio_data = base64.b64encode(audio_bytes).decode() try: stream = state.client.chat.completions.create( extra_body={ "require_audio": True, "tts_preset_id": "jessica", "tts_audio_format": format_, "tts_audio_bitrate": bitrate }, model="llama3.1-8b", messages=[{"role": "user", "content": [{"type": "audio", "data": audio_data}]}], temperature=0.7, max_tokens=256, stream=True, ) for chunk in stream: if not chunk.choices: continue content = chunk.choices[0].delta.content audio = getattr(chunk.choices[0], 'audio', []) if content or audio: audio_bytes = b''.join([base64.b64decode(a) for a in audio]) if audio else None yield content, audio_bytes, state except Exception as e: raise gr.Error(f"Error during audio streaming: {e}") def response(state: AppState): if state.stream is None or len(state.stream) == 0: yield None, None, state return audio_buffer = io.BytesIO() segment = AudioSegment( state.stream.tobytes(), frame_rate=state.sampling_rate, sample_width=state.stream.dtype.itemsize, channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]), ) segment.export(audio_buffer, format="wav") generator = generate_response_and_audio(audio_buffer.getvalue(), state) # Add the user's audio input to the conversation state.conversation.append({"role": "user", "content": "Audio input"}) # Prepare assistant's message assistant_message = {"role": "assistant", "content": ""} state.conversation.append(assistant_message) for text, audio, updated_state in generator: if text: assistant_message["content"] += text state = updated_state chatbot_output = state.conversation[-2:] # Get the last two messages yield chatbot_output, audio, state # Reset the audio stream for the next interaction state.stream = None state.pause_detected = False def start_recording_user(state: AppState): if not state.stopped: return gr.update(recording=True) else: return gr.update(recording=False) def set_api_key(api_key, state): if not api_key: raise gr.Error("Please enter a valid API key.") state.client = create_client(api_key) return "API key set successfully!", state def update_format(format, state): state.output_format = format return state with gr.Blocks() as demo: with gr.Row(): api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key") set_key_button = gr.Button("Set API Key") api_key_status = gr.Textbox(label="API Key Status", interactive=False) with gr.Row(): format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format") with gr.Row(): with gr.Column(): input_audio = gr.Audio(label="Input Audio", source="microphone", type="numpy") with gr.Column(): chatbot = gr.Chatbot(label="Conversation", type="messages") output_audio = gr.Audio(label="Output Audio", autoplay=True) state = gr.State(AppState()) set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state]) format_dropdown.change(update_format, inputs=[format_dropdown, state], outputs=[state]) stream = input_audio.stream( process_audio, [input_audio, state], [input_audio, state], stream_every=0.25, # Reduced to make it more responsive time_limit=60, # Increased to allow for longer messages ) respond = input_audio.stop_recording( response, [state], [chatbot, output_audio, state], ) # Automatically restart recording after the assistant's response restart = output_audio.change( start_recording_user, [state], [input_audio] ) # Add a "Stop Conversation" button cancel = gr.Button("Stop Conversation", variant="stop") cancel.click(lambda: (AppState(stopped=True), gr.update(recording=False)), None, [state, input_audio], cancels=[respond, restart]) demo.launch(queue=True, stream=True)