import gradio as gr import numpy as np import io from pydub import AudioSegment import tempfile import os import base64 import openai import time from dataclasses import dataclass, field from threading import Lock @dataclass class AppState: stream: np.ndarray | None = None sampling_rate: int = 0 pause_start: float | None = None last_speech: float = 0 conversation: list = field(default_factory=list) client: openai.OpenAI = None output_format: str = "mp3" # Global lock for thread safety state_lock = Lock() def create_client(api_key): return openai.OpenAI( base_url="https://llama3-1-8b.lepton.run/api/v1/", api_key=api_key ) def process_audio(audio: tuple, state: AppState): if state.stream is None: state.stream = audio[1] state.sampling_rate = audio[0] state.last_speech = time.time() else: state.stream = np.concatenate((state.stream, audio[1])) # Improved pause detection current_time = time.time() if np.max(np.abs(audio[1])) > 0.1: # Adjust this threshold as needed state.last_speech = current_time state.pause_start = None elif state.pause_start is None: state.pause_start = current_time # Check if pause is long enough to stop recording if state.pause_start and (current_time - state.pause_start > 2.0): # 2 seconds of silence return gr.Audio(recording=False), state return None, state def generate_response_and_audio(audio_bytes: bytes, state: AppState): if state.client is None: raise gr.Error("Please enter a valid API key first.") format_ = state.output_format bitrate = 128 if format_ == "mp3" else 32 # Higher bitrate for MP3, lower for OPUS audio_data = base64.b64encode(audio_bytes).decode() try: stream = state.client.chat.completions.create( extra_body={ "require_audio": True, "tts_preset_id": "jessica", "tts_audio_format": format_, "tts_audio_bitrate": bitrate }, model="llama3.1-8b", messages=[{"role": "user", "content": [{"type": "audio", "data": audio_data}]}], temperature=0.7, max_tokens=256, stream=True, ) full_response = "" audios = [] for chunk in stream: if not chunk.choices: continue content = chunk.choices[0].delta.content audio = getattr(chunk.choices[0], 'audio', []) if content: full_response += content yield full_response, None, state if audio: audios.extend(audio) audio_data = b''.join([base64.b64decode(a) for a in audios]) yield full_response, audio_data, state state.conversation.append({"role": "user", "content": "Audio input"}) state.conversation.append({"role": "assistant", "content": full_response}) except Exception as e: raise gr.Error(f"Error during audio streaming: {e}") def response(state: AppState): if state.stream is None or len(state.stream) == 0: return None, None, state audio_buffer = io.BytesIO() segment = AudioSegment( state.stream.tobytes(), frame_rate=state.sampling_rate, sample_width=state.stream.dtype.itemsize, channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]), ) segment.export(audio_buffer, format="wav") generator = generate_response_and_audio(audio_buffer.getvalue(), state) # Process the generator to get the final results final_text = "" final_audio = None for text, audio, updated_state in generator: final_text = text if text else final_text final_audio = audio if audio else final_audio state = updated_state # Update the chatbot with the final conversation chatbot_output = state.conversation[-2:] # Get the last two messages (user input and AI response) # Reset the audio stream for the next interaction state.stream = None state.pause_start = None state.last_speech = 0 return chatbot_output, final_audio, state def set_api_key(api_key, state): if not api_key: raise gr.Error("Please enter a valid API key.") state.client = create_client(api_key) return "API key set successfully!", state def update_format(format, state): state.output_format = format return state with gr.Blocks() as demo: with gr.Row(): api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key") set_key_button = gr.Button("Set API Key") api_key_status = gr.Textbox(label="API Key Status", interactive=False) with gr.Row(): format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format") with gr.Row(): with gr.Column(): input_audio = gr.Audio(label="Input Audio", sources="microphone", type="numpy") with gr.Column(): chatbot = gr.Chatbot(label="Conversation", type="messages") output_audio = gr.Audio(label="Output Audio", streaming=True, autoplay=True) state = gr.State(AppState()) set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state]) format_dropdown.change(update_format, inputs=[format_dropdown, state], outputs=[state]) stream = input_audio.stream( process_audio, [input_audio, state], [input_audio, state], stream_every=0.25, # Reduced to make it more responsive time_limit=60, # Increased to allow for longer messages ) respond = input_audio.stop_recording( response, [state], [chatbot, output_audio, state] ) demo.launch()