Spaces:
Running
Running
File size: 3,926 Bytes
7efd637 ca8dc25 4c02c40 7efd637 ca8dc25 7efd637 ca8dc25 5e6f5c8 b13161d ca8dc25 4c02c40 ca8dc25 77aebb7 a21891c 77aebb7 a21891c ca8dc25 a21891c ca8dc25 b13161d ca8dc25 de4d170 ca8dc25 de4d170 b13161d ca8dc25 b13161d ca8dc25 de4d170 5e6f5c8 b13161d 7efd637 5e6f5c8 de4d170 5e6f5c8 b13161d de4d170 7efd637 5e6f5c8 b13161d 5e6f5c8 ca8dc25 5e6f5c8 7efd637 5e6f5c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import gradio as gr
import os
from together import Together
import base64
from io import BytesIO
from PIL import Image
import numpy as np
# Initialize the Together client
api_key = os.environ.get('TOGETHER_API_KEY')
client = None
if api_key:
try:
client = Together(api_key=api_key)
except Exception as e:
print(f"Error initializing Together client: {e}")
def generate_gradio_app(image):
if not api_key or not client:
return "Error: TOGETHER_API_KEY not set or client initialization failed. Please check your API key."
try:
# Convert numpy array to PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image.astype('uint8'), 'RGB')
# Convert the image to base64
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Prepare the messages for the API call
system_message = """You are an AI assistant that can analyze wireframe images and generate detailed Gradio code based on their content. Your task is to provide a complete, runnable Gradio application that recreates the UI elements seen in the wireframe."""
user_message = f"""
<image>
data:image/png;base64,{img_str}
</image>
Analyze this wireframe image and generate a complete Python code using Gradio that recreates all the main elements seen in the image. Follow these guidelines:
1. Use appropriate Gradio components that best represent each UI element in the wireframe.
2. Include all necessary imports at the beginning of the code.
3. Implement placeholder functions for any interactive elements (buttons, inputs, etc.).
4. Use gr.Blocks() to create a layout that matches the wireframe as closely as possible.
5. Add appropriate labels and descriptions for all components.
6. Include the gr.Blocks().launch() call at the end of the code.
7. Provide a complete, runnable Gradio application that can be executed as-is.
8. Add comments explaining the purpose of each major section or component.
Please generate the entire code, including all necessary parts to make it a fully functional Gradio application.
"""
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
# Make the API call
response = client.chat.completions.create(
model="meta-llama/Llama-Vision-Free",
messages=messages,
max_tokens=2048,
temperature=0.7,
top_p=0.7,
top_k=50,
repetition_penalty=1,
stop=["<|im_end|>"],
stream=True
)
# Collect the streamed response
generated_code = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
generated_code += chunk.choices[0].delta.content
return generated_code
except Exception as e:
return f"An error occurred: {str(e)}\n\nPlease try again or check your API key and connection."
with gr.Blocks() as demo:
gr.Markdown("# Turn your wireframe into a Gradio app")
gr.Markdown("Upload an image of your UI design and we'll build a Gradio app for you.")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload a screenshot", elem_id="image_upload")
generate_button = gr.Button("Generate Gradio app", variant="primary")
with gr.Column(scale=2):
code_output = gr.Code(language="python", label="Generated Gradio Code", lines=30)
generate_button.click(
fn=generate_gradio_app,
inputs=[image_input],
outputs=[code_output]
)
demo.launch() |