Spaces:
Runtime error
Runtime error
Update app.py
Browse filesThat should fix 3 issues...
app.py
CHANGED
@@ -52,17 +52,17 @@ current_model = models[1] if is_colab else models[0]
|
|
52 |
current_model_path = current_model.path
|
53 |
|
54 |
if is_colab:
|
55 |
-
pipe = StableDiffusionPipeline.from_pretrained(current_model.path,
|
56 |
|
57 |
-
else: # download all models
|
58 |
print(f"{datetime.datetime.now()} Downloading vae...")
|
59 |
-
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae"
|
60 |
for model in models:
|
61 |
try:
|
62 |
print(f"{datetime.datetime.now()} Downloading {model.name} model...")
|
63 |
-
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet"
|
64 |
-
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae,
|
65 |
-
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae,
|
66 |
except Exception as e:
|
67 |
print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
|
68 |
models.remove(model)
|
@@ -98,7 +98,7 @@ def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0
|
|
98 |
current_model = model
|
99 |
model_path = current_model.path
|
100 |
|
101 |
-
generator = torch.Generator('
|
102 |
|
103 |
try:
|
104 |
if img is not None:
|
@@ -119,7 +119,7 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
|
|
119 |
current_model_path = model_path
|
120 |
|
121 |
if is_colab or current_model == custom_model:
|
122 |
-
pipe = StableDiffusionPipeline.from_pretrained(current_model_path,
|
123 |
else:
|
124 |
pipe = pipe.to("cpu")
|
125 |
pipe = current_model.pipe_t2i
|
@@ -152,7 +152,7 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
152 |
current_model_path = model_path
|
153 |
|
154 |
if is_colab or current_model == custom_model:
|
155 |
-
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path,
|
156 |
else:
|
157 |
pipe = pipe.to("cpu")
|
158 |
pipe = current_model.pipe_i2i
|
@@ -163,7 +163,7 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
163 |
|
164 |
prompt = current_model.prefix + prompt
|
165 |
ratio = min(height / img.height, width / img.width)
|
166 |
-
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
167 |
result = pipe(
|
168 |
prompt,
|
169 |
negative_prompt = neg_prompt,
|
|
|
52 |
current_model_path = current_model.path
|
53 |
|
54 |
if is_colab:
|
55 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
56 |
|
57 |
+
else: # download all models All models needed torch_dtype=torch.float16 removed for CPU. Add a If/Else so you can use both
|
58 |
print(f"{datetime.datetime.now()} Downloading vae...")
|
59 |
+
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae")
|
60 |
for model in models:
|
61 |
try:
|
62 |
print(f"{datetime.datetime.now()} Downloading {model.name} model...")
|
63 |
+
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet")
|
64 |
+
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler)
|
65 |
+
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler)
|
66 |
except Exception as e:
|
67 |
print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
|
68 |
models.remove(model)
|
|
|
98 |
current_model = model
|
99 |
model_path = current_model.path
|
100 |
|
101 |
+
generator = torch.Generator('cpu').manual_seed(seed) if seed != 0 else None #not using cuda, I can add another if/else if you like
|
102 |
|
103 |
try:
|
104 |
if img is not None:
|
|
|
119 |
current_model_path = model_path
|
120 |
|
121 |
if is_colab or current_model == custom_model:
|
122 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
123 |
else:
|
124 |
pipe = pipe.to("cpu")
|
125 |
pipe = current_model.pipe_t2i
|
|
|
152 |
current_model_path = model_path
|
153 |
|
154 |
if is_colab or current_model == custom_model:
|
155 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
156 |
else:
|
157 |
pipe = pipe.to("cpu")
|
158 |
pipe = current_model.pipe_i2i
|
|
|
163 |
|
164 |
prompt = current_model.prefix + prompt
|
165 |
ratio = min(height / img.height, width / img.width)
|
166 |
+
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.Resampling.LANCZOS) #added Resampling to avoid depreciation error
|
167 |
result = pipe(
|
168 |
prompt,
|
169 |
negative_prompt = neg_prompt,
|